The absorption spectrum of the solvated electron in fluid helium by maximum entropy inversion of imaginary time correlation functions from path integral Monte Carlo simulations

The dipole absorption spectrum of an electron in fluid helium is calculated by the maximum entropy method (MEM) numerical inversion of quantum Monte Carlo data obtained from a path integral Monte Carlo (PIMC) simulation at 309 K at the reduced densities ρ*=0.1, 0.3, 0.5, 0.7, and 0.9. Our results agree with the RISM‐polaron theory results of Nichols and Chandler [A. L. Nichols III and D. Chandler, J. Chem. Phys. 87, 6671 (1987)] and the grid wave function calculation of Coker and Berne [D. F. Coker and B. J. Berne, J. Chem. Phys. 89, 2128 (1988)]. The method generated the expected long high frequency tail and the low density zero‐frequency intensity caused by high conductivity. The method has also been tested by comparing the MEM absorption spectrum to the analytical spectrum of an electron confined in a spherical cavity of fluctuating radius, a model for a solvated electron in a localized state.

[1]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[2]  Jarrell,et al.  Quantum Monte Carlo simulations and maximum entropy: Dynamics from imaginary-time data. , 1991, Physical review. B, Condensed matter.

[3]  J. A. Barker A quantum‐statistical Monte Carlo method; path integrals with boundary conditions , 1979 .

[4]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[5]  A. Livesey,et al.  Maximum entropy analysis of quasielastic light scattering from colloidal dispersions , 1986 .

[6]  Bruce J. Berne,et al.  Path integral Monte Carlo studies of the behavior of excess electrons in simple fluids , 1987 .

[7]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[8]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[9]  D. Chandler,et al.  Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents , 1984 .

[10]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[11]  B. Berne,et al.  A new quantum propagator for hard sphere and cavity systems , 1992 .

[12]  Jarrell,et al.  Spectral densities of the symmetric Anderson model. , 1990, Physical review letters.

[13]  D. Chandler,et al.  Excess electrons in simple fluids. IV. Real time behavior , 1987 .

[14]  K. Miller Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .

[15]  N. Mermin,et al.  Determination of Thermodynamic Green's Functions , 1961 .

[16]  J. Skilling,et al.  Maximum entropy image reconstruction: general algorithm , 1984 .

[17]  Klein,et al.  Staging: A sampling technique for the Monte Carlo evaluation of path integrals. , 1985, Physical review. B, Condensed matter.

[18]  B. Berne,et al.  Excess electronic states in fluid helium , 1988 .

[19]  W. Jost,et al.  Physical Chemistry, An Advanced Treatise , 1974 .

[20]  Bruce J. Berne,et al.  Methods for simulating time correlation functions in quantum systems , 1991 .

[21]  W. T. Grandy Maximum entropy in action: Buck, Brian and Macaulay, Vincent A., 1991, 220 pp., Clarendon Press, Oxford, £30 pb, ISBN 0-19-8539630 , 1995 .

[22]  J. Jay-Gerin,et al.  Excess Electrons in Dielectric Media , 1991 .

[23]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[24]  D A Pierre,et al.  Optimization Theory with Applications , 1986 .