A Novel Hybrid Real-Valued Genetic Algorithm for Optimization Problems

Since genetic algorithm lacks hill-climbing capacity, it easily falls in a trap and finds a local minimum not the true solution. In this paper, a novel hybrid real- valued genetic algorithm (NHRVGA) combined with harmony search that merits of genetic algorithm and harmony search (HS) is proposed. It provides a new architecture of hybrid algorithms, which organically merges the harmony search (HS) method into real- valued genetic algorithm (RVGA). During the course of evolvement, harmony search is used to improve the search performance and this makes NHRVGA algorithm have more powerful exploitation capabilities. Simulation and comparisons based on several well- studied benchmarks demonstrate the effectiveness, efficiency and robustness of the proposed NHRVGA.

[1]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[2]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[3]  Adeike A. Adewuya New methods in genetic search with real-valued chromosomes , 1996 .

[4]  Francesco Camastra,et al.  Data dimensionality estimation methods: a survey , 2003, Pattern Recognit..

[5]  Zong Woo Geem,et al.  Harmony Search for Generalized Orienteering Problem: Best Touring in China , 2005, ICNC.

[6]  Hongbin Zha,et al.  Riemannian Manifold Learning for Nonlinear Dimensionality Reduction , 2006, ECCV.

[7]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[8]  Zhizhong Wang,et al.  Model optimizing and feature selecting for support vector regression in time series forecasting , 2008, Neurocomputing.

[9]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[10]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[11]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Patrick Siarry,et al.  A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions , 2000, J. Heuristics.

[13]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[14]  Robert M. Haralick,et al.  Nonlinear Manifold Clustering By Dimensionality , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[15]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[16]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[17]  Gerald Sommer,et al.  Intrinsic Dimensionality Estimation With Optimally Topology Preserving Maps , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  A. Sima Etaner-Uyar,et al.  Preserving Diversity through Diploidy and Meiosis for Improved Genetic Algorithm Performance in Dynamic Environments , 2002, ADVIS.

[21]  David E. Goldberg,et al.  Search space boundary extension method in real-coded genetic algorithms , 2001, Inf. Sci..

[22]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[23]  Robert S. Bennett,et al.  The intrinsic dimensionality of signal collections , 1969, IEEE Trans. Inf. Theory.

[24]  Ju-Jang Lee,et al.  Heterogeneous local model networks for time series prediction , 2005, Appl. Math. Comput..

[25]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[26]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[27]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[28]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[29]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[30]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[31]  Zhizhong Wang,et al.  Optimized Local Kernel Machines for Fast Time Series Forecasting , 2007, Third International Conference on Natural Computation (ICNC 2007).

[32]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[33]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[34]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[35]  Olivier Chapelle,et al.  Training a Support Vector Machine in the Primal , 2007, Neural Computation.

[36]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .