On the Classification of Topological Field Theories

This paper provides an informal sketch of a proof of the Baez-Dolan cobordism hypothesis, which provides a classification for extended topological quantum field theories.

[1]  Søren Galatius Stable homology of automorphism groups of free groups , 2006, math/0610216.

[2]  R. Thom Quelques propriétés globales des variétés différentiables , 1954 .

[3]  Michael Atiyah,et al.  Topological quantum field theories , 1988 .

[4]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[5]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[6]  I. Madsen,et al.  The stable moduli space of Riemann surfaces: Mumford's conjecture , 2002, math/0212321.

[7]  Ross Street,et al.  Coherence of tricategories , 1995 .

[8]  J. Lurie (Infinity,2)-Categories and the Goodwillie Calculus I , 2009, 0905.0462.

[9]  Kiyoshi Igusa The space of framed functions , 1987 .

[10]  Derived Algebraic Geometry II: Noncommutative Algebra , 2007, math/0702299.

[11]  Bertrand Toën Vers une axiomatisation de la théorie des catégories supérieures. , 2005 .

[12]  The homotopy type of the cobordism category , 2006, math/0605249.

[13]  N. Baas,et al.  On Bordism Theory of Manifolds with Singularities. , 1973 .

[14]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[15]  Topological conformal field theories and Calabi–Yau categories , 2004, math/0412149.

[16]  K. Vogtmann,et al.  Moduli of graphs and automorphisms of free groups , 1986 .

[17]  Julia E. Bergner,et al.  A Survey of (∞, 1)-Categories , 2010 .

[18]  Derived Algebraic Geometry III: Commutative Algebra , 2007, math/0703204.

[19]  J. Lurie Higher Topos Theory , 2006, math/0608040.