Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression

[1]  J. Colwell Vegetation canopy reflectance , 1974 .

[2]  M. E. Bauer,et al.  Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies , 1983 .

[3]  J. Harlan,et al.  Spectral estimation of Green leaf area index of oats , 1985 .

[4]  Marvin E. Bauer,et al.  Effects of nitrogen fertilizer on growth and reflectance characteristics of winter wheat , 1986 .

[5]  H. Lichtenthaler CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .

[6]  Olav M. Kvalheim,et al.  Latent-structure decompositions (projections) of multivariate data , 1987 .

[7]  P. Lancashire,et al.  A uniform decimal code for growth stages of crops and weeds , 1991 .

[8]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[9]  Moon S. Kim,et al.  Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .

[10]  R. Jackson,et al.  Multisite Analyses of Spectral-Biophysical Data for Wheat , 1992 .

[11]  Svend Christensen,et al.  Deriving light interception and biomass from spectral reflectance ratio. , 1993 .

[12]  Christopher B. Field,et al.  Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance , 1993 .

[13]  Christopher B. Field,et al.  Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves☆ , 1994 .

[14]  E. Simón,et al.  Radiometric characteristics of Triticum aestivum cv, Astral under water and nitrogen stress , 1994 .

[15]  R. Waring,et al.  The normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations , 1994 .

[16]  Josep Peñuelas,et al.  Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices and Discriminant Analysis , 1995 .

[17]  F. M. Danson,et al.  RED-EDGE RESPONSE TO FOREST LEAF-AREA INDEX (VOL 16, PG 183, 1995) , 1995 .

[18]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[19]  J. Peñuelas,et al.  Assessment of photosynthetic radiation‐use efficiency with spectral reflectance , 1995 .

[20]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[21]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[22]  A. Gitelson,et al.  Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm , 1996 .

[23]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[24]  A. Gitelson,et al.  Remote estimation of chlorophyll content in higher plant leaves , 1997 .

[25]  J. Porter,et al.  A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought , 1998 .

[26]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[27]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[28]  J. Goudriaan,et al.  Monitoring rice reflectance at field level for estimating biomass and LAI , 1998 .

[29]  William R. Raun,et al.  Estimating vegetation coverage in wheat using digital images , 1999 .

[30]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[31]  J. Araus,et al.  Spectral vegetation indices as nondestructive tools for determining durum wheat yield. , 2000 .

[32]  Neal A. Scott,et al.  Nitrogen concentration in New Zealand vegetation foliage derived from laboratory and field spectrometry , 2000 .

[33]  H. Keulen,et al.  Performance and application of the APSIM Nwheat model in the Netherlands , 2000 .

[34]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[35]  J. Peñuelas,et al.  Remote sensing of biomass and yield of winter wheat under different nitrogen supplies , 2000 .

[36]  G. Agati,et al.  New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. , 2001, Journal of photochemistry and photobiology. B, Biology.

[37]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[38]  A. Thomsen,et al.  Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression , 2002, The Journal of Agricultural Science.

[39]  N. Broge,et al.  Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data , 2002 .

[40]  D. Slaughter,et al.  A NIR Technique for Rapid Determination of Soil Mineral Nitrogen , 1999, Precision Agriculture.