Complex precipitation pathways in multicomponent alloys

One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al–Zr–Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al–Zr–Sc alloys compared with binary Al–Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials.

[1]  M. Koiwa,et al.  Diffusion Via Six-Jump Vacancy Cycles in the L12 Lattice , 1993 .

[2]  C. Sigli,et al.  Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: From kinetic Monte Carlo simulations to classical theory , 2004, cond-mat/0402137.

[3]  D. Seidman,et al.  Composition evolution of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy: experiments and computations. , 2006 .

[4]  E. Clouet,et al.  Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics , 2005, cond-mat/0503485.

[5]  P. Sterne,et al.  Electronic structure calculations of vacancies and their influence on materials properties , 1997 .

[6]  R. Holmestad,et al.  First-principles calculations of impurity diffusion activation energies in Al , 2006 .

[7]  V. Radmilović,et al.  Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys , 2005 .

[8]  B. M. Siegel,et al.  Physical aspects of electron microscopy and microbeam analysis , 1975 .

[9]  Zeller,et al.  Local-density-functional calculations for defect interactions in Al. , 1996, Physical review. B, Condensed matter.

[10]  D. Dunand,et al.  Microstructure of Al3Sc with ternary transition-metal additions , 2002 .

[11]  R. Egerton Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[12]  Emmanuel Clouet Séparation de phase dans les alliages Al-Zr-Sc : du saut des atomes à la croissance de précipités ordonnés , 2004 .

[13]  W. Ehrenberg,et al.  Small-Angle X-Ray Scattering , 1952, Nature.

[14]  M. Athènes,et al.  Antisite-assisted diffusion in the L12 ordered structure studied by Monte Carlo simulations , 1999 .

[15]  V. Ozoliņš,et al.  Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. , 2003, Physical review letters.

[16]  D. Seidman,et al.  Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures , 2003 .

[17]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[18]  W M Young,et al.  Monte Carlo studies of vacancy migration in binary ordered alloys: I , 1966 .

[19]  Ray F. Egerton,et al.  Electron Energy-Loss Spectroscopy , 1997, Microscopy and Microanalysis.

[20]  C. Sigli,et al.  Precipitation in Al-Zr-Sc alloys: a comparison between kinetic Monte Carlo, cluster dynamics and classical nucleation theory , 2005, cond-mat/0507259.

[21]  Ludovic Laé Etude de la précipitation en dynamique d'amas dans les alliages d'aluminium et dans les aciers , 2004 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[24]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[25]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[26]  J. Robson A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium , 2004 .

[27]  K. Hono,et al.  Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. , 2003, Ultramicroscopy.

[28]  V. V. Zakharov,et al.  Alloying aluminum alloys with scandium and zirconium additives , 1996 .

[29]  Methfessel,et al.  Derivation of force theorems in density-functional theory: Application to the full-potential LMTO method. , 1993, Physical review. B, Condensed matter.

[30]  D. Seidman,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II-coarsening of Al3(Sc1−xZrx) precipitates , 2005 .

[31]  T. Sanders,et al.  A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys , 2004 .

[32]  K. Marthinsen,et al.  Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys , 2004 .

[33]  Freeman,et al.  Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates. , 1990, Physical review. B, Condensed matter.

[34]  C. Sigli,et al.  First-principles study of the solubility of Zr in Al , 2002, cond-mat/0401430.

[35]  Y. Miura,et al.  Determination of Vacancy-Sc Interaction Energy by Electrical Resistivity Measurements , 2000 .

[36]  Frédéric Danoix,et al.  An improved reconstruction procedure for the correction of local magnification effects in 3D Atom Probe , 2004 .

[37]  J. Connolly,et al.  Density-functional theory applied to phase transformations in transition-metal alloys , 1983 .

[38]  A. Deschamps,et al.  Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy , 2005 .