Invariant zeros of SISO infinite-dimensional systems

The zeros of a finite-dimensional system can be characterised in terms of the eigenvalues of an operator on the largest closed feedback-invariant subspace. This characterisation is also valid for infinite-dimensional systems, provided that a largest closed feedback-invariant subspace exists. We generalise this characterisation of the zeros to the case when the largest closed feedback-invariant subspace does not exist. We give an example which shows that the choice of domain of the operator on this invariant subspace is crucial to this characterisation.

[1]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[2]  Douglas K. Lindner,et al.  Zeros of modal models of flexible structures , 1993 .

[3]  Kirsten Morris,et al.  Introduction to Feedback Control , 2001 .

[4]  Carsten Trunk,et al.  Minimum-Phase Infinite-Dimensional Second-Order Systems , 2007, IEEE Transactions on Automatic Control.

[5]  Robert L. Clark,et al.  Accounting for Out-of-Bandwidth Modes in the Assumed Modes Approach: Implications on Colocated Output Feedback Control , 1997 .

[6]  Frank Neubrander,et al.  INTEGRATED SEMIGROUPS AND THEIR APPLICATIONS TO THE ABSTRACT CAUCHY PROBLEM , 1988 .

[7]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[8]  Hans Zwart Where are the zeros located , 1999 .

[9]  S. Pohjolainen Computation of transmission zeros for distributed parameter systems , 1981 .

[10]  Heiko J. Zwart On the solution of DDP in infinite-dimensional systems , 1990 .

[11]  Ada Cheng,et al.  Accurate approximation of invariant zeros for a class of SISO abstract boundary control systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  L. Pandolfi Disturbance decoupling and invariant subspaces for delay systems , 1986 .

[13]  Hans Zwart,et al.  Geometric Theory for Infinite Dimensional Systems , 1989 .

[14]  Kirsten Morris,et al.  Feedback invariance of SISO infinite-dimensional systems , 2007, Math. Control. Signals Syst..

[15]  R. Curtain Invariance concepts in infinite dimensions , 1986 .

[16]  Olof J. Staffans,et al.  Transfer Functions of Regular Linear Systems Part III: Inversions and Duality , 2004 .

[17]  J. Pearson Linear multivariable control, a geometric approach , 1977 .