A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser

The exciplex pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, with and without ethane, by pumping Cs–Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). The blue satellites of the alkali D2 lines provide an advantageous pathway for optically pumping atomic alkali lasers on the principal series (resonance) transitions with broad linewidth (>2 nm) semiconductor diode lasers. The development of a simple theoretical analysis of continuous-wave XPAL systems is presented along with predictions as a function of temperature and pump intensity. The model predicts that an optical-to-optical efficiency in the range of 40–50% can be achieved for XPAL.

[1]  Raymond J. Beach,et al.  DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers , 2004, SPIE LASE.

[2]  Jason Zweiback,et al.  Alkali-vapor lasers , 2010, LASE.

[3]  David L. Carroll,et al.  Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers) , 2009, LASE.

[4]  David L. Carroll,et al.  High-fidelity modelling of an exciplex pumped alkali laser with radiative transport , 2011 .

[5]  Y. Jamil,et al.  Recent advancements in spectroscopy using tunable diode lasers , 2013 .

[6]  Michael C. Heaven,et al.  Multi-dimensional modeling of the XPAL system , 2010, LASE.

[7]  D. Carroll,et al.  Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation , 2009 .

[8]  Michael C. Heaven,et al.  Theoretical investigations of alkali metal: rare gas interaction potentials , 2009, LASE.

[9]  William F. Krupke,et al.  Diode pumped alkali lasers (DPALs)—A review (rev1) , 2012 .

[10]  D. Carroll,et al.  Effects of including a diffraction term into Rigrod theory for a continuous-wave laser. , 2009, Applied optics.

[11]  Gordon D. Hager,et al.  High efficiency hydrocarbon-free resonance transition potassium laser , 2009 .

[12]  R. Knize,et al.  Hydrocarbon-free potassium laser , 2007 .

[13]  Michael C. Heaven,et al.  Potential Energy Curves for Alkali Metal - Rare Gas Exciplex Lasers , 2010 .

[14]  Jason Zweiback,et al.  Modeling laser performance of scalable side pumped alkali laser , 2010, LASE.

[15]  W. Rigrod Saturation Effects in High‐Gain Lasers , 1965 .

[16]  J. Readle,et al.  Atomic alkali lasers pumped by the dissociation of photoexcited alkali-rare gas collision pairs , 2010 .

[17]  Boris V. Zhdanov,et al.  Multiple laser diode array pumped Cs laser with 48W output power , 2008 .

[18]  Joseph T. Verdeyen,et al.  Optical absorption and fluorescence studies in high pressure cesium-xenon mixtures , 1976 .

[19]  A. Podvyaznyy,et al.  250W diode laser for low pressure Rb vapor pumping , 2010, LASE.

[20]  V Keith Kanz,et al.  Resonance transition 795-nm rubidium laser. , 2003, Optics letters.

[21]  Joseph T. Verdeyen,et al.  Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers , 2010, LASE.

[22]  Joseph T. Verdeyen,et al.  Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers , 2008 .

[23]  D. Carroll,et al.  Four level, atomic Cs laser at 852.1 nm with a quantum efficiency above 98%: Observation of three body photoassociation , 2010 .

[24]  Kristin L. Galbally-Kinney,et al.  Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers , 2010 .

[25]  V. A. Eroshenko,et al.  Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation , 2012 .

[26]  Andrew D. Palla,et al.  XPAL theory and modeling with comparison to experiments , 2012, LASE.

[27]  W. E. Baylis Semiempirical, Pseudopotential Calculation of Alkali–Noble-Gas Interatomic Potentials , 1969 .

[28]  Alan Gallagher,et al.  Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials , 1972 .

[29]  Boris V. Zhdanov,et al.  Optically pumped potassium laser , 2007 .

[30]  V. K. Kanz,et al.  End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling , 2004 .

[31]  G. Perram,et al.  A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping , 2010 .

[32]  A. V. Phelps,et al.  Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened by Argon , 1973 .

[33]  David L. Carroll,et al.  Role of excited state photoionization in the 852.1 nm Cs laser pumped by Cs-Ar photoassociation , 2013 .