Generalized Set-valued Nonlinear Variational-like Inequalities and Fixed Point Problems: Existence and Approximation Solvability Results

[1]  Rajat Vaish,et al.  Hybrid viscosity implicit scheme for variational inequalities over the fixed point set of an asymptotically nonexpansive mapping in the intermediate sense in Banach spaces , 2021 .

[2]  T. O. Alakoya,et al.  Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems , 2020, Optimization.

[3]  Jen-Chih Yao,et al.  On modified proximal point algorithms for solving minimization problems and fixed point problems in CAT(κ) spaces , 2019, Mathematical Methods in the Applied Sciences.

[4]  Yekini Shehu,et al.  Viscosity iterative algorithms for fixed point problems of asymptotically nonexpansive mappings in the intermediate sense and variational inequality problems in Banach spaces , 2017, Numerical Algorithms.

[5]  C. Nahak,et al.  A hybrid viscosity iterative method with averaged mappings for split equilibrium problems and fixed point problems , 2016, Numerical Algorithms.

[6]  Jen-Chih Yao,et al.  Iterative algorithms for systems of extended regularized nonconvex variational inequalities and fixed point problems , 2014 .

[7]  Yeol Je Cho,et al.  Algorithms for solutions of extended general mixed variational inequalities and fixed points , 2013, Optim. Lett..

[8]  Jen-Chih Yao,et al.  EXTENDED GENERAL NONLINEAR QUASI-VARIATIONAL INEQUALITIES AND PROJECTION DYNAMICAL SYSTEMS , 2013 .

[9]  J. Balooee Iterative algorithm with mixed errors for solving a new system of generalized nonlinear variational-like inclusions and fixed point problems in Banach spaces , 2013 .

[10]  Phan Tu Vuong,et al.  Extragradient Methods and Linesearch Algorithms for Solving Ky Fan Inequalities and Fixed Point Problems , 2012, J. Optim. Theory Appl..

[11]  Farrukh Mukhamedov,et al.  Strong convergence of an explicit iteration process for a totally asymptotically I-nonexpansive mapping in Banach spaces , 2010, Appl. Math. Lett..

[12]  Kaleem Raza Kazmi,et al.  Existence and iterative approximation of solutions of generalized mixed equilibrium problems , 2008, Comput. Math. Appl..

[13]  Muhammad Aslam Noor,et al.  General Wiener-Hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces , 2008, Appl. Math. Comput..

[14]  Chi Kin Chan,et al.  Algorithms of common solutions to quasi variational inclusion and fixed point problems , 2008 .

[15]  Jen-Chih Yao,et al.  An extragradient-like approximation method for variational inequality problems and fixed point problems , 2007, Appl. Math. Comput..

[16]  A. H. Siddiqi,et al.  Ishikawa type iterative algorithm for completely generalized nonlinear quasi-variational-like inclusions in Banach spaces , 2007, Math. Comput. Model..

[17]  Habtu Zegeye,et al.  Approximating fixed points of total asymptotically nonexpansive mappings , 2006 .

[18]  Kaleem Raza Kazmi,et al.  Convergence and stability of iterative algorithms of generalized set-valued variational-like inclusions in Banach spaces , 2005, Appl. Math. Comput..

[19]  Zubair Khan,et al.  Proximal point algorithm for generalized multivalued nonlinear quasi-variational-like inclusions in Banach spaces , 2005, Appl. Math. Comput..

[20]  H. Hanche-Olsen On the uniform convexity of L^p , 2005, math/0502021.

[21]  Xie Ping Ding,et al.  A new class of completely generalized quasi-variational inclusions in Banach spaces , 2002 .

[22]  A. Moudafi Mixed equilibrium problems: Sensitivity analysis and algorithmic aspect , 2002 .

[23]  Xie Ping Ding,et al.  Generalized quasi-variational-like inclusions with nonconvex functionals , 2001, Appl. Math. Comput..

[24]  Jen-Chih Yao,et al.  A perturbed algorithm for strongly nonlinear variational-like inclusions , 2000, Bulletin of the Australian Mathematical Society.

[25]  M. Osilike Stability of the Mann and Ishikawa Iteration Procedures for φ-Strong Pseudocontractions and Nonlinear Equations of the φ-Strongly Accretive Type , 1998 .

[26]  Lishan Liu,et al.  Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces , 1995 .

[27]  Muhammad Aslam Noor,et al.  Wiener-hopf equations and variational inequalities , 1993 .

[28]  Xiaoqi Yang,et al.  A class of nonconvex functions and pre-variational inequalities , 1992 .

[29]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[30]  Peter Shi,et al.  Equivalence of variational inequalities with Wiener-Hopf equations , 1991 .

[31]  J. Parida,et al.  A variational-like inequality problem , 1989, Bulletin of the Australian Mathematical Society.

[32]  Jianxin Zhou,et al.  Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities , 1988 .

[33]  W. Petryshyn,et al.  A characterization of strict convexity of banach spaces and other uses of duality mappings , 1970 .

[34]  S. Nadler Multi-valued contraction mappings. , 1969 .

[35]  L. Ceng,et al.  Variational inequalities, variational inclusions and common fixed point problems in Banach spaces , 2020 .

[36]  R. Ahmad Generalized Multivalued Nonlinear Quasi-variational like Inclusions , 2002 .

[37]  W. A. Kirk,et al.  Handbook of metric fixed point theory , 2001 .

[38]  Xie Ping Ding,et al.  Perturbed proximal point algorithms for general quasi-variational-like inclusions , 2000 .

[39]  F. Giannessi,et al.  Variational inequalities and network equilibrium problems , 1995 .

[40]  Xie Ping Ding,et al.  A minimax inequality with applications to existence of equilibrium point and fixed point theorems , 1992 .

[41]  N. Lloyd TOPICS IN METRIC FIXED POINT THEORY (Cambridge Studies in Advanced Mathematics 28) , 1992 .

[42]  B. Craven,et al.  Necessary optimality conditions with a modified subdifferential , 1991 .

[43]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[44]  Alain Bensoussan,et al.  Applications of Variational Inequalities in Stochastic Control , 1982 .

[45]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .