Relative injectivity as cocompleteness for a class of distributors

Centro de Matematica da Universidade de Coimbra/FCT; Unidade de Investigacao e Desenvolvimento Matematica e Aplicacoes da Universidade de Aveiro/FCT.

[1]  Dirk Hofmann,et al.  Topological theories and closed objects , 2007 .

[2]  Austin Melton,et al.  Mathematical Foundations of Programming Semantics , 1985, Lecture Notes in Computer Science.

[3]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[4]  Dirk Hofmann,et al.  Exponentiation in V-categories , 2006 .

[5]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[6]  Dirk Hofmann,et al.  Topological Features of Lax Algebras , 2003, Appl. Categorical Struct..

[7]  Dirk Hofmann,et al.  Effective Descent Morphisms in Categories of Lax Algebras , 2004, Appl. Categorical Struct..

[8]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[9]  G. M. Kelly,et al.  Notes on enriched categories with colimits of some class (completed version) , 2005, math/0509102.

[10]  Martín Hötzel Escardó,et al.  Semantic Domains, Injective Spaces and Monads , 1999, MFPS.

[11]  Walter Tholen,et al.  Metric, topology and multicategory—a common approach , 2003 .

[12]  Carl A. Gunter,et al.  Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[13]  Ross Street,et al.  Variation through enrichment , 1983 .

[14]  Manuela Sobral,et al.  Categorical Foundations: Aspects of Monads , 2003 .

[15]  Dirk Hofmann,et al.  Lawvere Completion and Separation Via Closure , 2007, Appl. Categorical Struct..