Full description of Benjamin-Feir instability of Stokes waves in deep water

Small-amplitude, traveling, space periodic solutions –called Stokes waves– of the 2 dimensional gravity water waves equations in deep water are linearly unstable with respect to long-wave perturbations, as predicted by Benjamin and Feir in 1967. We completely describe the behavior of the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent is turned on. We prove in particular the conjecture that a pair of non-purely imaginary eigenvalues depicts a closed figure eight, parameterized by the Floquet exponent, in full agreement with numerical simulations. Our new spectral approach to the Benjamin-Feir instability phenomenon uses a symplectic version of Kato’s theory of similarity transformation to reduce the problem to determine the eigenvalues of a 4 × 4 complex Hamiltonian and reversible matrix. Applying a procedure inspired by KAM theory, we block-diagonalize such matrix into a pair of 2 × 2 Hamiltonian and reversible matrices, thus obtaining the full description of its eigenvalues.

[1]  Mathew A. Johnson,et al.  Modulational Instability in Equations of KdV Type , 2015, 1501.02788.

[2]  A. Maspero,et al.  Tame majorant analyticity for the Birkhoff map of the defocusing nonlinear Schrödinger equation on the circle , 2017, 1707.01668.

[3]  Thomas J. Bridges,et al.  A proof of the Benjamin-Feir instability , 1995 .

[4]  B. Deconinck,et al.  The instability of periodic surface gravity waves , 2011, Journal of Fluid Mechanics.

[5]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[6]  Zhiwu Lin,et al.  Nonlinear Modulational Instability of Dispersive PDE Models , 2017, Archive for Rational Mechanics and Analysis.

[7]  M. Berti,et al.  Quasi-Periodic Standing Wave Solutions of Gravity-Capillary Water Waves , 2016, Memoirs of the American Mathematical Society.

[8]  David P. Nicholls,et al.  Spectral Stability of Deep Two-Dimensional Gravity Water Waves: Repeated Eigenvalues , 2012, SIAM J. Appl. Math..

[9]  T. Levi-Civita,et al.  Détermination rigoureuse des ondes permanentes d'ampleur finie , 1925 .

[10]  Fernando Reitich,et al.  On analyticity of travelling water waves , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Mathew A. Johnson Stability of Small Periodic Waves in Fractional KdV-Type Equations , 2012, SIAM J. Math. Anal..

[12]  Tosio Kato Perturbation theory for linear operators , 1966 .

[13]  L. Ostrovsky,et al.  Modulation instability: The beginning , 2009 .

[14]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[15]  Thomas Brooke Benjamin,et al.  Instability of periodic wavetrains in nonlinear dispersive systems , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  A. Pandey,et al.  Modulational instability in nonlinear nonlocal equations of regularized long wave type , 2015, 1510.04717.

[17]  George Gabriel Stokes,et al.  On the theory of oscillatory waves , 2009 .

[18]  Vladimir E. Zakharov,et al.  The Instability of Waves in Nonlinear Dispersive Media , 1967 .

[19]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[20]  D. Bambusi,et al.  Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU , 2014, 1407.4315.

[21]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[22]  Frederic Rousset,et al.  Transverse instability of the line solitary water-waves , 2009, 0906.2487.

[23]  A. O. Korotkevich,et al.  Numerical simulation of surface waves instability on a homogeneous grid , 2016 .

[24]  D. J. Struik Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie , 1926 .

[25]  H. Lewy,et al.  A note on harmonic functions and a hydrodynamical application , 1952 .

[26]  B. Akers Modulational instabilities of periodic traveling waves in deep water , 2015 .

[27]  Todd Kapitula,et al.  On the spectra of periodic waves for infinite-dimensional Hamiltonian systems , 2008 .

[28]  S. Kuksin,et al.  Vey theorem in infinite dimensions and its application to KdV , 2009, 0910.0089.

[29]  Jared C. Bronski,et al.  The Modulational Instability for a Generalized Korteweg–de Vries Equation , 2008, 0809.4402.

[30]  Bernard Deconinck,et al.  The Orbital Stability of Elliptic Solutions of the Focusing Nonlinear Schrödinger Equation , 2019, SIAM J. Math. Anal..

[31]  Mathew A. Johnson,et al.  Modulational Instability in the Whitham Equation for Water Waves , 2013, 1312.1579.

[32]  Mathew A. Johnson,et al.  Stability of Traveling Wave Solutions of Nonlinear Dispersive Equations of NLS Type , 2019, Archive for Rational Mechanics and Analysis.

[33]  M. Haragus,et al.  Stability of small periodic waves for the nonlinear Schrödinger equation , 2006, math/0609026.

[34]  Proof of modulational instability of Stokes waves in deep water , 2020, 2007.05018.

[35]  Congming Li,et al.  Stabilizing the Benjamin–Feir instability , 2005, Journal of Fluid Mechanics.

[36]  Boris Buffoni,et al.  Analytic theory of global bifurcation , 2003 .

[37]  P. Baldi,et al.  Time quasi-periodic gravity water waves in finite depth , 2017, Inventiones mathematicae.

[38]  M. Berti,et al.  Traveling Quasi-periodic Water Waves with Constant Vorticity , 2020, Archive for Rational Mechanics and Analysis.

[39]  T. Kappeler Fibration of the phase space for the Korteweg-de-Vries equation , 1991 .