Maximizing a class of submodular utility functions

Given a finite ground set N and a value vector $${a \in \mathbb{R}^N}$$, we consider optimization problems involving maximization of a submodular set utility function of the form $${h(S)= f \left(\sum_{i \in S} a_i \right ), S \subseteq N}$$, where f is a strictly concave, increasing, differentiable function. This utility function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, for instance, in risk-averse capital budgeting under uncertainty, competitive facility location, and combinatorial auctions. These problems can be formulated as linear mixed 0-1 programs. However, the standard formulation of these problems using submodular inequalities is ineffective for their solution, except for very small instances. In this paper, we perform a polyhedral analysis of a relevant mixed-integer set and, by exploiting the structure of the utility function h, strengthen the standard submodular formulation significantly. We show the lifting problem of the submodular inequalities to be a submodular maximization problem with a special structure solvable by a greedy algorithm, which leads to an easily-computable strengthening by subadditive lifting of the inequalities. Computational experiments on expected utility maximization in capital budgeting show the effectiveness of the new formulation.

[1]  A. Mehrez,et al.  Resource Allocation to Interrelated Risky Projects Using a Multiattribute Utility Function , 1983 .

[2]  Laurence A. Wolsey,et al.  The 0-1 Knapsack problem with a single continuous variable , 1999, Math. Program..

[3]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[4]  Oded Berman,et al.  Flow intercepting spatial interaction model: a new approach to optimal location of competitive facilities , 1998 .

[5]  Oded Berman,et al.  Competitive facility location model with concave demand , 2007, Eur. J. Oper. Res..

[6]  Laurence A. Wolsey,et al.  Faces for a linear inequality in 0–1 variables , 1975, Math. Program..

[7]  S. Bochner,et al.  Book Review: Einar Hille, Functional analysis and semi-groups , 1949 .

[8]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[9]  G. Nemhauser,et al.  Maximizing a submodular function by integer programming: Polyhedral results for the quadratic case☆ , 1996 .

[10]  Alper Atamtürk,et al.  Sequence Independent Lifting for Mixed-Integer Programming , 2004, Oper. Res..

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[13]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.

[14]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[15]  T. Klastorin On a discrete nonlinear and nonseparable knapsack problem , 1990 .

[16]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[17]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[18]  Peter L. Hammer,et al.  Facet of regular 0–1 polytopes , 1975, Math. Program..

[19]  Laurence A. Wolsey,et al.  Submodularity and valid inequalities in capacitated fixed charge networks , 1989 .

[20]  James Corner,et al.  Characteristics of Decisions in Decision Analysis Practice , 1995 .

[21]  David L. Huff,et al.  Defining and Estimating a Trading Area , 1964 .

[22]  Noam Nisan,et al.  Approximation Algorithms for Combinatorial Auctions with Complement-Free Bidders , 2009 .

[23]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[24]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[25]  H. Weingartner Capital Budgeting of Interrelated Projects: Survey and Synthesis , 1966 .

[26]  Laurence A. Wolsey,et al.  Valid Inequalities and Superadditivity for 0-1 Integer Programs , 1977, Math. Oper. Res..

[27]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[28]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[29]  P. Schoemaker The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations , 1982 .