Critical graphs without triangles: An optimum density construction

AbstractWe construct dense, triangle-free, chromatic-critical graphs of chromatic number k for all k ≥ 4. For k ≥ 6 our constructions have $$> \left( {\tfrac{1} {4} - \varepsilon } \right)n^2$$ edges, which is asymptotically best possible by Turán’s theorem. We also demonstrate (nonconstructively) the existence of dense k-critical graphs avoiding all odd cycles of length ≤ ℓ for any ℓ and any k≥4, again with a best possible density of $$> \left( {\tfrac{1} {4} - \varepsilon } \right)n^2$$ edges for k ≥ 6. The families of graphs without triangles or of given odd-girth are thus rare examples where we know the correct maximal density of k-critical members (k ≥ 6).

[1]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[2]  András Gyárfás,et al.  On graphs with strongly independent color-classes , 2004 .

[3]  L. Lovász On chromatic number of finite set-systems , 1968 .

[4]  Carsten Thomassen,et al.  On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree , 2002, Comb..

[5]  Roland Häggkvist ODD Cycles of Specified Length in Non-Bipartite Graphs , 1982 .

[6]  Norbert Sauer,et al.  The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..

[7]  Michael Stiebitz,et al.  On graphs with strongly independent color‐classes , 2004, J. Graph Theory.

[8]  Stephan Brandt,et al.  On the Structure of Dense Triangle-Free Graphs , 1999, Combinatorics, Probability and Computing.

[9]  A. Schrijver,et al.  Vertex-critical subgraphs of Kneser-graphs , 1978 .

[10]  Miklós Simonovits,et al.  On a valence problem in extremal graph theory , 1973, Discret. Math..

[11]  Elst ter Afm,et al.  Gaussian estimates for second order elliptic operators with boundary conditions , 1995 .

[12]  Guoping Jin,et al.  Triangle-free four-chromatic graphs , 1995, Discret. Math..

[13]  P. Erdos,et al.  On chromatic number of graphs and set-systems , 1966 .

[14]  S. Brandt Dense triangle-free graphs are four-colorable : A solution to the Erdős-Simonovits problem , 2005 .

[15]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[16]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[17]  Igor Kríz,et al.  Ahypergraph-free construction of highly chromatic graphs without short cycles , 1989, Comb..

[18]  Alexandr V. Kostochka,et al.  On the Number of Edges in Colour-Critical Graphs and Hypergraphs , 2000, Comb..

[19]  Carsten Thomassen On The Chromatic Number Of Pentagon-Free Graphs Of Large Minimum Degree , 2007, Comb..

[20]  Tommy R. Jensen,et al.  Dense critical and vertex-critical graphs , 2002, Discret. Math..

[21]  Claude Tardif,et al.  Fractional chromatic numbers of cones over graphs , 2001, J. Graph Theory.