The Overdensity in Virgo, Sagittarius Debris, and the Asymmetric Spheroid

We investigate the relationship between several previously identified Galactic halo stellar structures in the direction of Virgo using imaging and spectroscopic observations of F turnoff stars and blue horizontal-branch stars from SDSS and SEGUE. We show that the Sagittarius dwarf leading tidal tail does not pass through the solar neighborhood; it misses the Sun by more than 15 kpc, passing through the Galactic plane outside the solar circle. Nor is it spatially coincident with the large stellar overdensity S297+63-20.5 in the Virgo constellation. S297+63-20.5 has a distinct turnoff color and kinematics. Faint (g0 ~ 20.3) turnoff stars in S297+63-20.5 have line-of-sight, Galactic standard of rest velocities Vgsr = 130 ? 10 km s-1, opposite in sign to infalling Sgr tail stars. The path of the Sgr leading tidal tail is also inconsistent with the positions of some of the nearer stars with which it has been associated and whose velocities have favored models with prolate Milky Way potentials. We also show that the number densities of brighter (g0 ~ 19.8) F turnoff stars are not symmetric about the Galactic center and that this discrepancy is not primarily due to the S297+63-20.5 moving group. Either the spheroid is asymmetric about the Galactic center or there are additional substructures that conspire to be on the same side of the Galaxy as S297+63-20.5. The S297+63-20.5 overdensity in Virgo is likely associated with two other previously identified Virgo substructures: the Virgo stellar stream (VSS) and the Virgo overdensity (VOD). However, the velocity difference between the VSS and S297+63-20.5 and the difference in distance estimates between the VOD and S297+63-20.5 must be reconciled.

[1]  Lee The Astronomische Nachrichten , 1858 .

[2]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[3]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[4]  Robert Rosner,et al.  Photometric Separation of Stellar Properties Using SDSS Filters , 1998 .

[5]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[6]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[7]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[8]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[9]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 Kiloparsecs and Other Overdensities in the Outer Halo , 2001, astro-ph/0105135.

[10]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[11]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[12]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[13]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[14]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[15]  D. Lamb,et al.  A Low-Latitude Halo Stream around the Milky Way , 2003, astro-ph/0301029.

[16]  L. Pentericci,et al.  Selection of Metal-poor Giant Stars Using the Sloan Digital Sky Survey Photometric System , 2002, astro-ph/0211562.

[17]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[18]  P. Prugniel,et al.  The ELODIE Archive , 2004, astro-ph/0405025.

[19]  Kathryn V. Johnston,et al.  A TWO MICRON ALL SKY SURVEY VIEW OF THE SAGITTARIUS DWARF GALAXY. III. CONSTRAINTS ON THE FLATTENING OF THE GALACTIC HALO , 2004 .

[20]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .

[21]  TRACING OUT THE NORTHERN TIDAL STREAM OF THE SAGITTARIUS DWARF SPHEROIDAL GALAXY , 2003, astro-ph/0308009.

[22]  S. Majewski,et al.  A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails , 2004, astro-ph/0407566.

[23]  Amina Helmi,et al.  Velocity Trends in the Debris of Sagittarius and the Shape of the Dark Matter Halo of Our Galaxy , 2004, astro-ph/0406396.

[24]  G. Carraro,et al.  Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar Stream , 2005, astro-ph/0510589.

[25]  P. Seidelmann,et al.  Astrometry in the Age of the Next Generation of Large Telescopes , 2005 .

[26]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[27]  V. Belokurov,et al.  The Origin of the Bifurcation in the Sagittarius Stream , 2006, astro-ph/0605026.

[28]  M. Correnti,et al.  Detection of a population gradient in the Sagittarius stream , 2006, astro-ph/0608513.

[30]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[31]  The asymmetric structure of the Galactic halo , 2006, astro-ph/0602565.

[32]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[33]  The Virgo Stellar Overdensity: Mapping the Infall of the Sagittarius Tidal Stream onto the Milky Way Disk , 2006, astro-ph/0609104.

[34]  B. Yanny,et al.  An Orphan in the "Field of Streams" , 2007 .

[35]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[36]  The structure of the galactic halo: SDSS versus SuperCOSMOS , 2007, astro-ph/0703516.

[37]  M. Bellazzini,et al.  High-resolution spectroscopy of RGB stars in the Sagittarius streams. I. Radial velocities and chemical abundances , 2006, astro-ph/0611070.

[38]  Bhaskar Dutta,et al.  ou rnal of Cosmology and Astroparticle Physics , 2009 .

[39]  L. McFadden Astrophysics , 2013, AccessScience.