Hovering black holes from charged defects

We construct the holographic dual of an electrically charged, localized defect in a conformal field theory at strong coupling, by applying a spatially dependent chemical potential. We find that the infrared behaviour of the spacetime depends on the spatial falloff of the potential. Moreover, for sufficiently localized defects with large amplitude, we find that a new gravitational phenomenon occurs: a spherical extremal charged black hole nucleates in the bulk: a hovering black hole. This is a second order quantum phase transition. We construct this new phase with several profiles for the chemical potential and study its properties. We find an apparently universal behaviour for the entropy of the defect as a function of its amplitude. We comment on the possible field theory implications of our results.

[1]  H. Zeng,et al.  Zeroth order phase transition in a holographic superconductor with single impurity , 2014, 1411.3955.

[2]  D. Tong,et al.  Holographic charge oscillations , 2014, 1412.2003.

[3]  T. Wiseman,et al.  Null infinity and extremal horizons in AdS-CFT , 2014, 1408.3417.

[4]  G. Horowitz,et al.  Vortices in holographic superfluids and superconductors as conformal defects , 2013, 1311.3673.

[5]  C. Hoyos,et al.  A holographic model of the Kondo effect , 2013, 1310.3271.

[6]  K. Jensen,et al.  Holography, Entanglement Entropy, and Conformal Field Theories with Boundaries or Defects , 2013, 1309.4523.

[7]  F. Denef,et al.  Holographic vitrification , 2013, 1309.0146.

[8]  Hari K. Kunduri,et al.  Classification of Near-Horizon Geometries of Extremal Black Holes , 2013, Living reviews in relativity.

[9]  Sarah M. Harrison,et al.  A maximally supersymmetric Kondo model , 2011, 1110.5325.

[10]  J. Polchinski,et al.  Towards a Holographic Marginal Fermi Liquid , 2011, 1105.1772.

[11]  T. Wiseman,et al.  Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua , 2011, 1104.4489.

[12]  M. Headrick,et al.  A new approach to static numerical relativity and its application to Kaluza–Klein black holes , 2009, 0905.1822.

[13]  A. Derdzínski,et al.  Ricci solitons , 2017, 1712.06055.

[14]  S. Hartnoll,et al.  Building a holographic superconductor. , 2008, Physical review letters.

[15]  S. Sachdev,et al.  Valence Bond Solid Order Near Impurities in Two-Dimensional Quantum Antiferromagnets , 2007, 0710.0626.

[16]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[17]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[18]  F. Bouchet,et al.  Classification of Phase Transitions and Ensemble Inequivalence, in Systems with Long Range Interactions , 2003, cond-mat/0303307.

[19]  R. Cai,et al.  Thermodynamics and stability of hyperbolic charged black holes , 2004, hep-th/0406057.

[20]  Kostas Skenderis,et al.  Holographic Reconstruction of Spacetime¶and Renormalization in the AdS/CFT Correspondence , 2000, hep-th/0002230.

[21]  V. Balasubramanian,et al.  A Stress Tensor for Anti-de Sitter Gravity , 1999, hep-th/9902121.

[22]  M. Choptuik,et al.  Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.

[23]  A. Ludwig,et al.  Universal noninteger "ground-state degeneracy" in critical quantum systems. , 1991, Physical review letters.

[24]  J. Plebański,et al.  Rotating, charged, and uniformly accelerating mass in general relativity , 1976 .

[25]  F. J. Ernst Removal of the nodal singularity of the C‐metric , 1976 .

[26]  W. Kinnersley,et al.  UNIFORMLY ACCELERATING CHARGED MASS IN GENERAL RELATIVITY. , 1970 .