A pediatric brain tumor atlas of genes deregulated by somatic genomic rearrangement

[1]  Michael C. Rusch,et al.  Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X , 2020, Nature Genetics.

[2]  Lucas Lochovsky,et al.  Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences , 2020, Cell.

[3]  The Icgctcga Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes , 2020 .

[4]  Nuno A. Fonseca,et al.  Analyses of non-coding somatic drivers in 2,658 cancer whole genomes , 2020, Nature.

[5]  Nuno A. Fonseca,et al.  High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations , 2020, Nature Communications.

[6]  Mary Goldman,et al.  Genomic basis for RNA alterations in cancer , 2020, Nature.

[7]  David T. W. Jones,et al.  The Molecular Landscape of ETMR at Diagnosis and Relapse , 2019, Nature.

[8]  Allison P. Heath,et al.  Pediatric high-grade glioma resources from the Children’s Brain Tumor Tissue Consortium , 2019, bioRxiv.

[9]  Lovelace J. Luquette,et al.  Global impact of somatic structural variation on the DNA methylome of human cancers , 2019, Genome Biology.

[10]  J. Weinstein,et al.  Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. , 2019, Cell reports.

[11]  Allison P. Heath,et al.  Pediatric High Grade Glioma Resources From the Children’s Brain Tumor Tissue Consortium (CBTTC) and Pediatric Brain Tumor Atlas (PBTA) , 2019, bioRxiv.

[12]  V. Miller,et al.  Detection of Known and Novel FGFR Fusions in Non–Small Cell Lung Cancer by Comprehensive Genomic Profiling , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[13]  Jack Cuzick,et al.  Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death , 2018, eLife.

[14]  Lovelace J. Luquette,et al.  A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Rearrangement across More Than 1,400 Cases. , 2018, Cell reports.

[15]  H. Budka,et al.  K27/G34 versus K28/G35 in histone H3-mutant gliomas: A note of caution , 2018, Acta Neuropathologica.

[16]  Michael T. Zimmermann,et al.  Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas , 2018, Cell reports.

[17]  Michael C. Heinold,et al.  The landscape of genomic alterations across childhood cancers , 2018, Nature.

[18]  C. Creighton,et al.  Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases , 2018, Clinical Cancer Research.

[19]  James Suh,et al.  Comprehensive Genomic Profiling of 282 Pediatric Low‐ and High‐Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures , 2017, The oncologist.

[20]  Gunnar Rätsch,et al.  Genomic basis for RNA alterations revealed by whole-genome analyses of 27 cancer types , 2017 .

[21]  Michael Ittmann,et al.  Pan-urologic cancer genomic subtypes that transcend tissue of origin , 2017, Nature Communications.

[22]  M. Shago,et al.  Multiplex Detection of Pediatric Low-Grade Glioma Signature Fusion Transcripts and Duplications Using the NanoString nCounter System , 2017, Journal of neuropathology and experimental neurology.

[23]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[24]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[25]  I. Petersen,et al.  Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking , 2016, Nature Genetics.

[26]  Erik Larsson,et al.  Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers , 2016, Proceedings of the National Academy of Sciences.

[27]  H. Nishihara,et al.  Genetic landscape of meningioma , 2016, Brain Tumor Pathology.

[28]  M. Israel,et al.  Pediatric Brain Tumors: Current Knowledge and Therapeutic Opportunities , 2016, Journal of pediatric hematology/oncology.

[29]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[30]  Roland Eils,et al.  Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. , 2016, Cancer cell.

[31]  Gary D. Bader,et al.  Divergent clonal selection dominates medulloblastoma at recurrence , 2016, Nature.

[32]  Liliana Goumnerova,et al.  MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism , 2016, Nature Genetics.

[33]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.

[34]  N. Socci,et al.  Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity , 2015, Nature Biotechnology.

[35]  F. Darvishian,et al.  A Note of Caution , 2015, International journal of surgical pathology.

[36]  J. Starmer,et al.  Histone H3.3 maintains genome integrity during mammalian development , 2015, Genes & development.

[37]  Chris Sander,et al.  Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication , 2014, Genome research.

[38]  Lawrence A. Donehower,et al.  The somatic genomic landscape of chromophobe renal cell carcinoma. , 2014, Cancer cell.

[39]  Lovelace J. Luquette,et al.  Diverse Mechanisms of Somatic Structural Variations in Human Cancer Genomes , 2013, Cell.

[40]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[41]  Li Ding,et al.  C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma , 2014, Nature.

[42]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of urothelial bladder carcinoma , 2014, Nature.

[43]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[44]  P. Stephens,et al.  BRAF Fusions Define a Distinct Molecular Subset of Melanomas with Potential Sensitivity to MEK Inhibition , 2013, Clinical Cancer Research.

[45]  Dongfang Li,et al.  Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance , 2013, Nature Genetics.

[46]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[47]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[48]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[49]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[50]  Lynda Chin,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2013, Science.

[51]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[52]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[53]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[54]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[55]  Krishna R. Kalari,et al.  A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines , 2011, Nucleic acids research.

[56]  Martin M Matzuk,et al.  A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. , 2008, RNA.

[57]  G. Reifenberger,et al.  BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. , 2008, The Journal of clinical investigation.

[58]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[59]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  William Stafford Noble,et al.  Matrix2png: a utility for visualizing matrix data , 2003, Bioinform..

[61]  S. Hirohashi,et al.  Short Communication Craniopharyngiomas of Adamantinomatous Type Harbor -Catenin Gene Mutations , 2002 .

[62]  S. Hirohashi,et al.  Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. , 2002, The American journal of pathology.

[63]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.

[64]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .