Apomixis: a developmental perspective.

The term apomixis encompasses a suite of processes whereby seeds form asexually in plants. In contrast to sexual reproduction, seedlings arising from apomixis retain the genotype of the maternal parent. The transfer of apomixis and its effective utilization in crop plants (where it is largely absent) has major advantages in agriculture. The hallmark components of apomixis include female gamete formation without meiosis (apomeiosis), fertilization-independent embryo development (parthenogenesis), and developmental adaptations to ensure functional endosperm formation. Understanding the molecular mechanisms underlying apomixis, a developmentally fascinating phenomenon in plants, is critical for the successful induction and utilization of apomixis in crop plants. This review draws together knowledge gained from analyzing ovule, embryo, and endosperm development in sexual and apomictic plants. It consolidates the view that apomixis and sexuality are closely interrelated developmental pathways where apomixis can be viewed as a deregulation of the sexual process in both time and space.

[1]  T. Kuroiwa,et al.  Pollen Tube Attraction by the Synergid Cell , 2001, Science.

[2]  I. I. Shamrov Translocation pathways for metabolites in developing ovules of Gentiana cruciata L., Gymnadenia conopsea (L.) R. Br., Gagea stipitata Merklin and Luzula pedemontana Boiss. et Reut. , 2000 .

[3]  J. Nitsch Plant Hormones in the Development of Fruits , 1952, The Quarterly Review of Biology.

[4]  Matthew R. Tucker,et al.  Dynamics of callose deposition and β-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium , 2001, Planta.

[5]  R. Pedersen,et al.  Parthenogenetic activation of mouse oocytes using calcium ionophores and protein kinase C stimulators. , 1996, The International journal of developmental biology.

[6]  L. Jerling,et al.  Apomixis in Plants , 1992 .

[7]  B. Roy The breeding systems of six species of Arabis (Brassicaceae) , 1995 .

[8]  P. Reddy,et al.  Mechanism of Apomixis in Dichanthium annulatum (Forssk) Stapf , 1969, Botanical Gazette.

[9]  R. Moore Cytological and Embryological Studies in the Amphiapomictic Arabis Holboellii Complex, by Tyge Böcher , 1952 .

[10]  U. Grossniklaus,et al.  Genomic imprinting during seed development. , 2002, Advances in genetics.

[11]  R. Bicknell,et al.  The Potential Impacts of Apomixis: A Molecular Genetics Approach , 1996 .

[12]  J. J. Spies,et al.  Cytogenetic studies in the genus Tribolium (Poaceae: Danthonieae). III. Section Tribolium , 1994 .

[13]  U. Grossniklaus,et al.  ...response: Parental conflict and infanticide during embryogenesis , 1998 .

[14]  M. Toonen,et al.  A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. , 1997, Development.

[15]  A. Koltunow The genetic and molecular analysis of apomixis in the model plant Hieracium , 2000 .

[16]  E. Lord,et al.  The mechanisms of pollination and fertilization in plants. , 2002, Annual review of cell and developmental biology.

[17]  V. Sundaresan,et al.  Genetics of gametophyte biogenesis in Arabidopsis. , 2000, Current opinion in plant biology.

[18]  R. Bicknell Isolation of a diploid, apomictic plant of Hieracium aurantiacum , 1997, Sexual Plant Reproduction.

[19]  Bruschi,et al.  Classification of , 2010 .

[20]  T. Naumova,et al.  Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae) , 2001, Sexual Plant Reproduction.

[21]  E. C. Bashaw,et al.  Apomixis: its identification and use in plant breeding , 1987 .

[22]  F. Berger,et al.  Maternal control of seed development. , 2001, Seminars in cell & developmental biology.

[23]  H. Dickinson,et al.  Hypomethylation Promotes Autonomous Endosperm Development and Rescues Postfertilization Lethality in fie Mutants , 2000, Plant Cell.

[24]  D. Haig,et al.  Genomic imprinting in endosperm : its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis , 1991 .

[25]  S. Satina PERICLINAL CHIMERAS IN DATURA IN RELATION TO THE DEVELOPMENT AND STRUCTURE OF THE OVULE , 1945 .

[26]  J. Birchler Dosage analysis of maize endosperm development. , 1993, Annual review of genetics.

[27]  S. Jacobsen,et al.  Ectopic hypermethylation of flower-specific genes in Arabidopsis , 2000, Current Biology.

[28]  D. Grimanelli,et al.  Dosage effects in the endosperm of diplosporous apomictic Tripsacum (Poaceae) , 1997, Sexual Plant Reproduction.

[29]  U. Grossniklaus,et al.  The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 Gene Is Expressed in Developing Ovules and Embryos and Enhances Embryogenic Competence in Culture , 2001 .

[30]  W. Hanna,et al.  An apomictic polyhaploid obtained from a pearl millet x Pennisetum squamulatum apomictic interspecific hybrid , 1986, Theoretical and Applied Genetics.

[31]  Lee Hs,et al.  Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. , 2001 .

[32]  A. Chaudhury,et al.  Apomixis: Molecular Strategies for the Generation of Genetically Identical Seeds without Fertilization , 1995, Plant physiology.

[33]  Marilu A. Hoeppner,et al.  Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. , 1998, Science.

[34]  A. Koltunow,et al.  Fruit development is actively restricted in the absence of fertilization in Arabidopsis. , 2001, Development.

[35]  Z. Chen,et al.  Protein-coding genes are epigenetically regulated in Arabidopsis polyploids , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. A. Stricker Comparative biology of calcium signaling during fertilization and egg activation in animals. , 1999, Developmental biology.

[37]  Charles F. Crane,et al.  Apomixis--The Asexual Revolution , 1996, Science.

[38]  J. Feijó,et al.  Differential contribution of cytoplasmic Ca2+ and Ca2+ influx to gamete fusion and egg activation in maize , 2001, Nature Cell Biology.

[39]  J. Berthaud Apomixis and the management of genetic diversity , 2001 .

[40]  H. Nybom Apomixis versus sexuality in blackberries (Rubus subgen.Rubus, Rosaceae) , 1988, Plant Systematics and Evolution.

[41]  J. Carman Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony , 1997 .

[42]  U. Grossniklaus,et al.  Diverse functions of Polycomb group proteins during plant development. , 2003, Seminars in cell & developmental biology.

[43]  C. Gasser,et al.  GENETIC ANALYSIS OF OVULE DEVELOPMENT. , 1998, Annual review of plant physiology and plant molecular biology.

[44]  The Egg Cell: Development and Role in Fertilization and Early Embryogenesis. , 1993, The Plant cell.

[45]  R. Scott,et al.  Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? , 2001, Sexual Plant Reproduction.

[46]  G. Hurst,et al.  Inherited microorganisms, sex-specific virulence and reproductive parasitism. , 2001, Trends in parasitology.

[47]  V. Chandler,et al.  Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. , 2002, Genes & development.

[48]  U. Grossniklaus,et al.  Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. , 1997, Cold Spring Harbor symposia on quantitative biology.

[49]  P. Repetti,et al.  A mutation that allows endosperm development without fertilization. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  W. Peacock,et al.  Control of early seed development. , 2001, Annual review of cell and developmental biology.

[51]  J. Werren,et al.  Wolbachia run amok. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  P. Ozias‐Akins,et al.  Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? , 2001, Sexual Plant Reproduction.

[53]  C. Quarin Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum , 1999, Sexual Plant Reproduction.

[54]  U. Grossniklaus,et al.  Delayed activation of the paternal genome during seed development , 2022 .

[55]  J. Messing,et al.  Genomic imprinting in plants. , 1999, Results and problems in cell differentiation.

[56]  U. Grossniklaus,et al.  How to avoid sex: the genetic control of gametophytic apomixis. , 2001, The Plant cell.

[57]  P. Ozias‐Akins,et al.  Seed Set in an Apomictic BC3 Pearl Millet , 1998, International Journal of Plant Sciences.

[58]  U. Grossniklaus,et al.  Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. , 2002, Current opinion in cell biology.

[59]  F. Berger Endosperm: the crossroad of seed development. , 2003, Current opinion in plant biology.

[60]  Y. Savidan Transfer of apomixis through wide crosses , 2001 .

[61]  U. Grossniklaus,et al.  Developmental genetics of gametophytic apomixis. , 2001, Trends in genetics : TIG.

[62]  Zhongchi Liu,et al.  Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA , 2000, Plant Cell.

[63]  H. E. Warmke APOMIXIS IN PANICUM MAXIMUM , 1954 .

[64]  L. Lepiniec,et al.  LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  R. Steinhardt,et al.  Activation of sea-urchin eggs by a calcium ionophore. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Y. Nagato,et al.  Discovery of highly apomictic and highly amphimictic dihaploids in Allium tuberosum , 1997, Sexual Plant Reproduction.

[67]  J. Hilbert,et al.  Somatic Embryogenesis in Chicory (Cichorium Species) , 1995 .

[68]  F. Berger,et al.  Polycomb group genes control pattern formation in plant seed , 2001, Current Biology.

[69]  U. Grossniklaus,et al.  Apomixis in agriculture: the quest for clonal seeds , 2001, Sexual Plant Reproduction.

[70]  S. Sykes,et al.  Comparing Imperial mandarin and Silverhill satsuma mandarin as seed parents in a breeding program aimed at developing new seedless citrus cultivars for Australia , 1996 .

[71]  Heiko Schoof,et al.  Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem , 1998, Cell.

[72]  W. Hanna,et al.  Effect of Three Ploidy Levels on Meiosis and Mode of Reproduction in Paspalum hexastachyum1 , 1980 .

[73]  U. Grossniklaus,et al.  The molecular and genetic basis of ovule and megagametophyte development. , 1998, Seminars in cell & developmental biology.

[74]  G. N. Drews,et al.  Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. , 1998, Developmental biology.

[75]  M. Willemse,et al.  The Female Gametophyte , 1984 .

[76]  Robert B Goldberg,et al.  Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells , 1998, Cell.

[77]  G. A. Nogler Genetics of apospory in apomictic Ranunculus auricomus. V: Conclusion , 1984 .

[78]  R. Yadegari,et al.  Mutations in FIE, a WD Polycomb Group Gene, Allow Endosperm Development without Fertilization , 1999, Plant Cell.

[79]  W. Peacock,et al.  Fertilization-independent seed development in Arabidopsis thaliana. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  U. Grossniklaus,et al.  Engineering of Apomixis in Crop Plants: What Can We Learn from Sexual Model Systems? , 2003 .

[81]  H. Dickinson,et al.  Parent-of-origin effects on seed development in Arabidopsis thaliana. , 1998, Development.

[82]  Yves Savidan Hérédité de l'Apomixie Contribution à l'étude de l'hérédité de l'apomixie sur Panicum maximum Jacq. (analyse des sacs embryonnaires) , 1975 .

[83]  K. Yokomunakata Developmental abnormalities and epimutations associated with DNA hypomethylation mutations , 1996 .

[84]  M. Ehlers,et al.  Hypermethylated SUPERMAN Epigenetic Alleles in Arabidopsis , 1997 .

[85]  M. Mogie The evolution of asexual reproduction in plants , 1994 .

[86]  J. Feijó,et al.  A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A. Koltunow,et al.  Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency , 2001, Planta.

[88]  B. Lin,et al.  Ploidy barrier to endosperm development in maize. , 1984, Genetics.

[89]  S. Tweedie,et al.  Remembrance of things past: chromatin remodeling in plant development. , 2002, Annual review of cell and developmental biology.

[90]  I. Golubovskaya,et al.  The mac1 gene: controlling the commitment to the meiotic pathway in maize. , 1996, Genetics.

[91]  V. Sharma,et al.  Ectopic Expression of BABY BOOM Triggers a Conversion from Vegetative to Embryonic Growth Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001941. , 2002, The Plant Cell Online.

[92]  L. Altschmied,et al.  Parthenogenetic egg cells of wheat: cellular and molecular studies , 2001, Sexual Plant Reproduction.

[93]  Cong,et al.  Short Communication: An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. , 1999, The Plant journal : for cell and molecular biology.

[94]  B. Lin,et al.  Association of endosperm reduction with parental imprinting in maize. , 1982, Genetics.

[95]  U. Grossniklaus,et al.  The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. , 2001, Plant physiology.

[96]  O. Olsen ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification. , 2001, Annual review of plant physiology and plant molecular biology.

[97]  F. Matzk The ‘Salmon System’ of Wheat — a Suitable Model for Apomixis Research , 2004 .

[98]  U. Grossniklaus,et al.  Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes , 2000, Current Biology.

[99]  A. Araújo,et al.  Female gametophyte development in apomictic and sexual : Brachiaria brizantha (POACEAE) , 2000 .

[100]  U. Grossniklaus,et al.  Evolutionary origins of the endosperm in flowering plants , 2002, Genome Biology.

[101]  C. Rambaud,et al.  There is No Somatic Meiosis in Embryogenic Leaves of Cichorium , 1996 .

[102]  G. N. Drews,et al.  Genetic Analysis of Female Gametophyte Development and Function , 1998, Plant Cell.

[103]  W. Hanna Use of Apomixis in Cultivar Development , 1995 .

[104]  P. Ozias‐Akins,et al.  Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[105]  F. Berger Endosperm development. , 1999, Current opinion in plant biology.

[106]  M. Shimada,et al.  Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  W. Peacock,et al.  Genes controlling fertilization-independent seed development in Arabidopsis thaliana. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[108]  V. Chandler,et al.  Long-distance cis and trans interactions mediate paramutation. , 2002, Advances in genetics.

[109]  W. Peacock,et al.  Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[110]  K. Schneitz,et al.  NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. , 2000, Development.

[111]  P. Callaerts,et al.  Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. , 1995, Science.

[112]  J. Berthaud,et al.  Reproductive Behavior in Maize-Tripsacum Polyhaploid Plants: Implications for the Transfer of Apomixis Into Maize , 1996 .

[113]  A. Koltunow Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. , 1993, The Plant cell.

[114]  U. Grossniklaus,et al.  Parent-of-Origin Effects and Seed Development: Genetics and Epigenetics , 2002 .

[115]  J. P. Jackson,et al.  The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. , 2000, Molecular cell.

[116]  T. Naumova Apomixis in angiosperms : nucellar and integumentary embryony , 1993 .

[117]  J. Shaw,et al.  Mitochondrial GFA2 Is Required for Synergid Cell Death in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.002170. , 2002, The Plant Cell Online.

[118]  R. Yadegari,et al.  Mutations in the FIE and MEA Genes That Encode Interacting Polycomb Proteins Cause Parent-of-Origin Effects on Seed Development by Distinct Mechanisms , 2000, Plant Cell.

[119]  S. Pessino,et al.  A rise of ploidy level induces the expression of apomixis in Paspalum notatum , 2001, Sexual Plant Reproduction.

[120]  U. Grossniklaus,et al.  Genomic imprinting and seed development: endosperm formation with and without sex. , 2001, Current opinion in plant biology.

[121]  G. Jürgens,et al.  Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. , 1999, Genetics.

[122]  G. Hurst,et al.  Wolbachia pipientis: microbial manipulator of arthropod reproduction. , 1999, Annual review of microbiology.

[123]  N. Chua,et al.  The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. , 2002, The Plant journal : for cell and molecular biology.