Angiopoietins: a link between angiogenesis and inflammation.

[1]  H. Hammes,et al.  Methylglyoxal Modification of mSin3A Links Glycolysis to Angiopoietin-2 Transcription , 2007, Cell.

[2]  H. Augustin,et al.  Emerging roles of the Angiopoietin‐Tie and the ephrin‐Eph systems as regulators of cell trafficking , 2006, Journal of leukocyte biology.

[3]  K. Alitalo,et al.  Common Protective and Diverse Smooth Muscle Cell Effects of AAV-Mediated Angiopoietin-1 and -2 Expression in Rat Cardiac Allograft Vasculopathy , 2006, Circulation research.

[4]  C. Roussos,et al.  Regulation of Ang2 release by PTEN/PI3‐kinase/Akt in lung microvascular endothelial cells , 2006, Journal of cellular physiology.

[5]  M. Rondaij,et al.  Dynamics and Plasticity of Weibel-Palade Bodies in Endothelial Cells , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[6]  Chung-Hyun Cho,et al.  COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. Olsen,et al.  Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. , 2006, Experimental cell research.

[8]  H. Augustin,et al.  Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation , 2006, Nature Medicine.

[9]  H. Hammes,et al.  RETRACTED: Methylglyoxal Modification of mSin3A Links Glycolysis to Angiopoietin-2 Transcription , 2006, Cell.

[10]  Peter Carmeliet,et al.  Angiogenesis in life, disease and medicine , 2005, Nature.

[11]  Janet Rossant,et al.  Endothelial cells and VEGF in vascular development , 2005, Nature.

[12]  C. Betsholtz,et al.  Endothelial/Pericyte Interactions , 2005, Circulation research.

[13]  Luigi Naldini,et al.  Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. , 2005, Cancer cell.

[14]  R. Galli,et al.  Tie2 identifies a hematopoietic monocytes required for tumor lineage of proangiogenic vessel formation and a mesenchymal population of pericyte progenitors , 2005 .

[15]  A. Kotanidou,et al.  Angiopoietin-2 Causes Inflammation in Vivo by Promoting Vascular Leakage , 2005, Journal of Pharmacology and Experimental Therapeutics.

[16]  K. Alitalo,et al.  Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. , 2005, Blood.

[17]  T. Davis,et al.  The Blood-Brain Barrier/Neurovascular Unit in Health and Disease , 2005, Pharmacological Reviews.

[18]  P. Campochiaro,et al.  Different effects of angiopoietin‐2 in different vascular beds in the eye: new vessels are most sensitive , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  H. Augustin,et al.  Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2 , 2005, The Journal of cell biology.

[20]  Yang Luo,et al.  N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis , 2005, The Journal of cell biology.

[21]  D. Voskas,et al.  A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. , 2005, The American journal of pathology.

[22]  H. Augustin,et al.  The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism , 2005, Journal of Cell Science.

[23]  J. Favier,et al.  Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. , 2005, Blood.

[24]  Thomas Hartmann,et al.  Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. , 2004, Cancer cell.

[25]  Christian J Wiedermann,et al.  Expression and function of the angiopoietin receptor Tie-2 in human eosinophils. , 2004, The Journal of allergy and clinical immunology.

[26]  H. Augustin,et al.  Expression of Angiopoietin-2 in Endothelial Cells Is Controlled by Positive and Negative Regulatory Promoter Elements , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[27]  C. Lowenstein,et al.  Sphingosine 1-phosphate activates Weibel-Palade body exocytosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Hallahan,et al.  Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. , 2004, Experimental cell research.

[29]  Ju-Hyun Kim,et al.  Biological characterization of angiopoietin‐3 and angiopoietin‐4 , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  Elisabetta Dejana,et al.  Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. , 2004, Physiological reviews.

[31]  P. Campochiaro,et al.  Angiopoietin‐2 enhances retinal vessel sensitivity to vascular endothelial growth factor , 2004, Journal of cellular physiology.

[32]  H. Augustin,et al.  The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. , 2004, Blood.

[33]  Yi Wei,et al.  Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). , 2004, Genes & development.

[34]  R. Kammerer,et al.  Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Elisabetta Dejana,et al.  Endothelial cell–cell junctions: happy together , 2004, Nature Reviews Molecular Cell Biology.

[36]  M. Weitzman,et al.  A new animal model for pulmonary hypertension based on the overexpression of a single gene, angiopoietin-1. , 2004, The Annals of thoracic surgery.

[37]  F. Luscinskas,et al.  Regulation of Leukocyte Transmigration: Cell Surface Interactions and Signaling Events 1 , 2004, The Journal of Immunology.

[38]  B. Dunmore,et al.  ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1. , 2003, Blood.

[39]  M. Tsuneyoshi,et al.  Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma , 2003, Journal of clinical pathology.

[40]  M. Vadas,et al.  New therapeutic targets in vascular biology , 2003, Thrombosis and Haemostasis.

[41]  P. Thistlethwaite,et al.  Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Imhof,et al.  Forging the endothelium during inflammation: pushing at a half-open door? , 2003, Cell and Tissue Research.

[43]  P. Carmeliet Angiogenesis in health and disease , 2003, Nature Medicine.

[44]  D. Vestweber Commentary Lymphocyte trafficking through blood and lymphatic vessels: more than just selectins, chemokines and integrins , 2003, European journal of immunology.

[45]  B. Jeon,et al.  Tie-ing the antiinflammatory effect of angiopoietin-1 to inhibition of NF-kappaB. , 2003, Circulation research.

[46]  M. Marron,et al.  The Antiinflammatory Endothelial Tyrosine Kinase Tie2 Interacts With a Novel Nuclear Factor-&kgr;B Inhibitor ABIN-2 , 2003, Circulation research.

[47]  K. Alitalo,et al.  Angiopoietin-1 Protects Against the Development of Cardiac Allograft Arteriosclerosis , 2003, Circulation.

[48]  H. Augustin,et al.  Angiopoietin-1 and Angiopoietin-2 Share the Same Binding Domains in the Tie-2 Receptor Involving the First Ig-like Loop and the Epidermal Growth Factor-like Repeats* , 2003, The Journal of Biological Chemistry.

[49]  P. Campochiaro,et al.  Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. , 2002, Developmental cell.

[50]  Richard A. Lang,et al.  Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. York,et al.  The Endothelial Receptor Tyrosine Kinase Tie1 Activates Phosphatidylinositol 3-Kinase and Akt To Inhibit Apoptosis , 2002, Molecular and Cellular Biology.

[52]  S. Karpatkin,et al.  Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. , 2002, Blood.

[53]  G. Koh,et al.  Angiopoietin-1 Reduces VEGF-Stimulated Leukocyte Adhesion to Endothelial Cells by Reducing ICAM-1, VCAM-1, and E-Selectin Expression , 2001, Circulation research.

[54]  M. Mrksich,et al.  Direct Cell Adhesion to the Angiopoietins Mediated by Integrins* , 2001, The Journal of Biological Chemistry.

[55]  P. Thistlethwaite,et al.  Human angiopoietin gene expression is a marker for severity of pulmonary hypertension in patients undergoing pulmonary thromboendarterectomy. , 2001, The Journal of thoracic and cardiovascular surgery.

[56]  K. Alitalo,et al.  Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. , 2001, Cardiovascular research.

[57]  H. Augustin,et al.  Blood vessel maturation in a 3‐dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[58]  J. Gamble,et al.  Angiopoietin-1 Is an Antipermeability and Anti-Inflammatory Agent In Vitro and Targets Cell Junctions , 2000, Circulation research.

[59]  Ji-Hye Kim,et al.  Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway , 2000, Oncogene.

[60]  H. Dvorak,et al.  Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi's sarcoma and cutaneous angiosarcoma. , 2000, The American journal of pathology.

[61]  S. Mandriota,et al.  Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. , 2000, The American journal of pathology.

[62]  G. Koh,et al.  Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. , 2000, Circulation research.

[63]  N. Glazer,et al.  Angiopoietin-1 protects the adult vasculature against plasma leakage , 2000, Nature Medicine.

[64]  R. Kalb,et al.  Angiopoietin-1 Inhibits Endothelial Cell Apoptosis via the Akt/Survivin Pathway* , 2000, The Journal of Biological Chemistry.

[65]  K. Suzuma,et al.  Hypoxia and Vascular Endothelial Growth Factor Selectively Up-regulate Angiopoietin-2 in Bovine Microvascular Endothelial Cells* , 1999, The Journal of Biological Chemistry.

[66]  G. Yancopoulos,et al.  Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. , 1999, Genes & development.

[67]  N. Copeland,et al.  Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  K. Plate,et al.  Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. , 1998, The American journal of pathology.

[69]  S. Mandriota,et al.  Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. , 1998, Circulation research.

[70]  Thomas N. Sato,et al.  Increased vascularization in mice overexpressing angiopoietin-1. , 1998, Science.

[71]  J. Isner,et al.  Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. , 1998, Circulation research.

[72]  J. Loscalzo,et al.  Endothelial cells in physiology and in the pathophysiology of vascular disorders. , 1998, Blood.

[73]  M. Dewhirst,et al.  Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. , 1997, Circulation research.

[74]  M. Lampugnani,et al.  Interendothelial junctions: structure, signalling and functional roles. , 1997, Current opinion in cell biology.

[75]  Thomas N. Sato,et al.  Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. , 1997, Science.

[76]  Douglas Hanahan,et al.  Signaling Vascular Morphogenesis and Maintenance , 1997, Science.

[77]  Pamela F. Jones,et al.  Isolation of Angiopoietin-1, a Ligand for the TIE2 Receptor, by Secretion-Trap Expression Cloning , 1996, Cell.

[78]  Pamela F. Jones,et al.  Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis , 1996, Cell.

[79]  L. Cantley,et al.  Vascular Dysmorphogenesis Caused by an Activating Mutation in the Receptor Tyrosine Kinase TIE2 , 1996, Cell.

[80]  Thomas N. Sato,et al.  Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation , 1995, Nature.

[81]  C. Wollheim,et al.  Reactive oxygen intermediates induce regulated secretion of von Willebrand factor from cultured human vascular endothelial cells. , 1995, Blood.

[82]  J. Partanen,et al.  The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. , 1994, Oncogene.

[83]  H. Schnürch,et al.  Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. , 1993, Development.

[84]  Thomas N. Sato,et al.  Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[85]  A. Iwama,et al.  Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. , 1993, Biochemical and biophysical research communications.

[86]  J. Rossant,et al.  tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. , 1992, Oncogene.

[87]  J. Partanen,et al.  A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains , 1992, Molecular and cellular biology.

[88]  K. Dikranian,et al.  Effect of vasoactive amines on Weibel-Palade bodies in capillary endothelial cells , 1991, Experientia.

[89]  B. Zetter,et al.  The cellular basis of site-specific tumor metastasis. , 1990, The New England journal of medicine.

[90]  J. Dobbing,et al.  THE BLOOD-BRAIN BARRIER , 1961, The Lancet.

[91]  H. Kanetake,et al.  Angiopoietin 2 stimulates migration and tube-like structure formation of murine brain capillary endothelial cells through c-Fes and c-Fyn. , 2002, Journal of cell science.