Femtosecond laser induced structural changes in fluorozirconate glass

Fluorozirconate glasses, such as ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), have a high infrared transparency and large rare-earth solubility, which makes them an attractive platform for highly efficient and compact mid-IR waveguide lasers. We investigate the structural changes within the glass network induced by high repetition rate femtosecond laser pulses and reveal the origin of the observed decrease in refractive index by using Raman microscopy. The high repetition rate pulse train causes local melting followed by rapid quenching of the glass network. This results in breaking of bridging bonds between neighboring zirconium fluoride polyhedra and as the glass resolidifies, a larger fraction of single bridging fluorine bonds relative to double bridging links are formed in comparison to the pristine glass. The distance between adjacent zirconium cations is larger for single bridging than double bridging links and consequently an expansion of the glass network occurs. The rarified glass network can be related to the experimentally observed decrease in refractive index via the Lorentz-Lorenz equation.

[1]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[2]  D. Booth,et al.  Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm , 1996 .

[3]  Fuxi Gan,et al.  Optical properties of fluoride glasses: a review , 1995 .

[4]  Taco D. Visser,et al.  Comparison of different theories for focusing through a plane interface , 1997 .

[5]  Jan Siegel,et al.  Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass , 2005 .

[6]  Marc Douay,et al.  Photoinduced surface expansion of fluorozirconate glasses , 2000 .

[7]  V. Bouznik,et al.  QUANTUM CHEMICAL AND SPECTROSCOPIC STUDY OF FLUORIDE GLASSES , 1999 .

[8]  K. Hirao,et al.  A molecular dynamics study of barium meta‐fluorozirconate glass , 1985 .

[9]  Peter Dekker,et al.  Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure. , 2008, Optics express.

[10]  R. Iyer,et al.  Telecom-Band Directional Coupler Written With Femtosecond Fiber Laser , 2006, IEEE Photonics Technology Letters.

[11]  J. Mackenzie,et al.  A structural interpretation of the vibrational spectra of binary fluorohafnate glasses , 1983 .

[12]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[13]  Peter R. Herman,et al.  A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems , 2006 .

[14]  Jiyeon Choi,et al.  Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Tanya M. Monro,et al.  Fluoride glass microstructured optical fibre with large mode area and mid-infrared transmission , 2008 .

[16]  Rui M. Almeida,et al.  Vibrational spectroscopy of glasses , 1988 .

[17]  J. Lucas,et al.  X‐Ray Scattering Studies of Glasses in the System ZrF4‐BaF2 , 1983 .

[18]  J. Adam,et al.  First stages of the crystallization in fluorozirconate glasses , 1989 .

[19]  G. Walrafen,et al.  Low‐frequency Raman investigation of lead‐containing fluorozirconate glasses and melts , 1985 .

[20]  Y. Kawamoto,et al.  Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses , 1983 .

[21]  Peter Dekker,et al.  Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime , 2010 .

[22]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[23]  John D. Mackenzie,et al.  Vibrational spectra and structure of fluorozirconate glasses , 1981 .

[24]  S. Gross,et al.  Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers. , 2012, Optics express.

[25]  John D. Mackenzie,et al.  The effects of oxide impurities on the optical properties of fluoride glasses , 1983 .

[26]  T. Grande,et al.  SPECTROSCOPIC INVESTIGATIONS OF FLUOROZIRCONATE GLASSES IN THE TERNARY SYSTEMS ZRF4-BAF2-AF (A = NA, LI) , 1996 .

[27]  J. J. Witcher,et al.  Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses , 2009 .

[28]  M. Withford,et al.  Structural changes in BK7 glass upon exposure to femtosecond laser pulses , 2011 .

[29]  David G. Lancaster,et al.  Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics , 2012 .

[30]  Y. Kawamoto,et al.  Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6. , 1983 .

[31]  E. Mazur,et al.  Bulk heating of transparent materials using a high-repetition-rate femtosecond laser , 2003 .

[32]  H. H. van den Vlekkert,et al.  Integration of femtosecond laser written optical waveguides in a lab-on-chip. , 2009, Lab on a chip.

[33]  Martin Richardson,et al.  Direct femtosecond laser writing of waveguides in As2S3 thin films. , 2004, Optics letters.

[34]  J. J. Witcher,et al.  Direct femtosecond laser waveguide writing inside zinc phosphate glass. , 2011, Optics express.

[35]  E. Mazur,et al.  Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. , 2001, Optics letters.

[36]  C. Angell,et al.  A structural model for prototypical fluorozirconate glass , 1987 .

[37]  Y Sheng,et al.  Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. , 2007, Optics letters.

[38]  S. Risbud,et al.  Structural changes in fused silica after exposure to focused femtosecond laser pulses. , 2001, Optics letters.

[39]  Richard K. Brow,et al.  Review: the structure of simple phosphate glasses , 2000 .

[40]  C. Angell,et al.  Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts , 1991 .

[41]  Thomas R Huser,et al.  Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses , 2003 .

[42]  Jeremy Allington-Smith,et al.  Ultrafast laser inscription: an enabling technology for astrophotonics. , 2009, Optics express.

[43]  Nicholas F. Borrelli,et al.  Study of femtosecond-laser-written waveguides in glasses , 2002 .

[44]  Denise M. Krol,et al.  Femtosecond laser modification of glass , 2008 .

[45]  C. Angell,et al.  Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation , 1992 .

[46]  James A. Piper,et al.  Ultrafast laser written active devices , 2009 .

[47]  M J Withford,et al.  Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser. , 2011, Optics letters.