Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway.

[1]  J. Bader,et al.  A DNA Integrity Network in the Yeast Saccharomyces cerevisiae , 2013, Cell.

[2]  S. Elledge,et al.  Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. , 2012, Molecular cell.

[3]  K. Cimprich,et al.  Finally, polyubiquitinated PCNA gets recognized. , 2012, Molecular cell.

[4]  Junjie Chen,et al.  The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. , 2012, Molecular cell.

[5]  S. Jentsch,et al.  9-1-1: PCNA's specialized cousin. , 2011, Trends in biochemical sciences.

[6]  D. Branzei,et al.  Ubiquitin family modifications and template switching , 2011, FEBS letters.

[7]  J. Parker,et al.  The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA , 2011, Nucleic acids research.

[8]  S. Elledge,et al.  A DNA Damage Response Screen Identifies RHINO, a 9-1-1 and TopBP1 Interacting Protein Required for ATR Signaling , 2011, Science.

[9]  L. Prakash,et al.  Requirement of Replication Checkpoint Protein Kinases Mec1/Rad53 for Postreplication Repair in Yeast , 2011, mBio.

[10]  H. Lieberman,et al.  The role of RAD9 in tumorigenesis. , 2011, Journal of molecular cell biology.

[11]  W. Heyer,et al.  Regulation of homologous recombination in eukaryotes. , 2010, Annual review of genetics.

[12]  D. Branzei,et al.  Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch , 2010, PLoS genetics.

[13]  R. Chanet,et al.  Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. , 2010, Molecular cell.

[14]  Xiaolan Zhao,et al.  The Smc5/6 Complex and Esc2 Influence Multiple Replication-associated Recombination Processes in Saccharomyces cerevisiae , 2010, Molecular biology of the cell.

[15]  A. Davies,et al.  Ubiquitin-dependent DNA damage bypass is separable from genome replication , 2010, Nature.

[16]  S. Jentsch,et al.  The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase , 2010, Cell.

[17]  R. Kanaar,et al.  Dealing with DNA damage: relationships between checkpoint and repair pathways. , 2010, Mutation research.

[18]  S. Nagai,et al.  Posttranslational modifications of repair factors and histones in the cellular response to stalled replication forks. , 2009, DNA repair.

[19]  M. Foiani,et al.  The checkpoint response to replication stress. , 2009, DNA repair.

[20]  W. Xiao,et al.  The yeast Shu complex couples error‐free post‐replication repair to homologous recombination , 2009, Molecular microbiology.

[21]  L. Prakash,et al.  Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. , 2009, Genes & development.

[22]  M. Foiani,et al.  SUMOylation regulates Rad18-mediated template switch , 2008, Nature.

[23]  Marco Foiani,et al.  Regulation of DNA repair throughout the cell cycle , 2008, Nature Reviews Molecular Cell Biology.

[24]  H. Ulrich Conservation of DNA damage tolerance pathways from yeast to humans. , 2007, Biochemical Society transactions.

[25]  P. Tran,et al.  A mutation in EXO1 defines separable roles in DNA mismatch repair and post-replication repair. , 2007, DNA repair.

[26]  I. Hickson,et al.  Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3. , 2007, Molecular biology of the cell.

[27]  A. Lehmann,et al.  Translesion synthesis: Y-family polymerases and the polymerase switch. , 2007, DNA repair.

[28]  Sara K. Binz,et al.  Replication Protein A Directs Loading of the DNA Damage Checkpoint Clamp to 5′-DNA Junctions* , 2006, Journal of Biological Chemistry.

[29]  T. Pandita,et al.  Mammalian Rad9 Plays a Role in Telomere Stability, S- and G2-Phase-Specific Cell Survival, and Homologous Recombinational Repair , 2006, Molecular and Cellular Biology.

[30]  M. Lopes,et al.  Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. , 2006, Molecular cell.

[31]  C. Lawrence,et al.  The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Boris Pfander,et al.  SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase , 2005, Nature.

[33]  Efterpi Papouli,et al.  Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. , 2005, Molecular cell.

[34]  R. Rothstein,et al.  A Genetic Screen for top3 Suppressors in Saccharomyces cerevisiae Identifies SHU1, SHU2, PSY3 and CSM2 , 2005, Genetics.

[35]  M. Lopes,et al.  Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. , 2005, Genes & development.

[36]  Sonnet J. H. Arlander,et al.  Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. , 2004, DNA repair.

[37]  A. Sancar,et al.  Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. , 2004, Annual review of biochemistry.

[38]  B. Stillman,et al.  Biochemical Characterization of DNA Damage Checkpoint Complexes: Clamp Loader and Clamp Complexes with Specificity for 5′ Recessed DNA , 2003, PLoS biology.

[39]  A. Nicolas,et al.  A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Jerzy Majka,et al.  Yeast Rad17/Mec3/Ddc1: A sliding clamp for the DNA damage checkpoint , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Vroman,et al.  Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) Chromatin Association Is an Early Checkpoint Signaling Event* , 2002, The Journal of Biological Chemistry.

[42]  P. Tran,et al.  Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. , 2002, DNA repair.

[43]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[44]  S. Kron,et al.  Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair. , 2002, Journal of cell science.

[45]  G. Roeder,et al.  A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint. , 2002, Genes & development.

[46]  Mihoko Kai,et al.  Fission Yeast Rad17 Associates with Chromatin in Response to Aberrant Genomic Structures , 2001, Molecular and Cellular Biology.

[47]  S. Elledge,et al.  The DNA damage response: putting checkpoints in perspective , 2000, Nature.

[48]  F. Galibert,et al.  POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase δ, defines a link between DNA replication and the mutagenic bypass repair pathway , 2000, Current Genetics.

[49]  Ceslovas Venclovas,et al.  Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes , 2000, Nucleic Acids Res..

[50]  T. Caspari,et al.  Characterization of Schizosaccharomyces pombeHus1: a PCNA-Related Protein That Associates with Rad1 and Rad9 , 2000, Molecular and Cellular Biology.

[51]  Č. Venclovas,et al.  A Sliding Clamp Model for the Rad1 Family of Cell Cycle Checkpoint Proteins , 1999, Cell.

[52]  Kunihiro Matsumoto,et al.  Role of a Complex Containing Rad17, Mec3, and Ddc1 in the Yeast DNA Damage Checkpoint Pathway , 1999, Molecular and Cellular Biology.

[53]  N. Rhind,et al.  Mitotic DNA damage and replication checkpoints in yeast. , 1998, Current opinion in cell biology.

[54]  L. Hartwell,et al.  The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. , 1998, Genetics.

[55]  D. Stern,et al.  Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. , 1998, Science.

[56]  M. A. de la Torre-Ruiz,et al.  RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation , 1998, The EMBO journal.

[57]  H. Lieberman Extragenic suppressors of Schizosaccharomyces pombe rad9 mutations uncouple radioresistance and hydroxyurea sensitivity from cell cycle checkpoint control. , 1995, Genetics.

[58]  G. Jimenez,et al.  The rad3+ gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  L. Hartwell,et al.  The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. , 1988, Science.

[60]  Zhijian J. Chen,et al.  Expanding role of ubiquitination in NF-κB signaling , 2011, Cell Research.

[61]  A. Nasim,et al.  Recovery, repair, and mutagenesis in Schizosaccharomyces pombe. , 1985, Advances in genetics.