PDE-constrained optimization in medical image analysis

PDE-constrained optimization problems find many applications in medical image analysis, for example, neuroimaging, cardiovascular imaging, and oncologic imaging. We review the related literature and give examples of the formulation, discretization, and numerical solution of PDE-constrained optimization problems for medical imaging. We discuss three examples. The first is image registration, the second is data assimilation for brain tumor patients, and the third is data assimilation in cardiovascular imaging. The image registration problem is a classical task in medical image analysis and seeks to find pointwise correspondences between two or more images. Data assimilation problems use a PDE-constrained formulation to link a biophysical model to patient-specific data obtained from medical images. The associated optimality systems turn out to be sets of nonlinear, multicomponent PDEs that are challenging to solve in an efficient way. The ultimate goal of our work is the design of inversion methods that integrate complementary data, and rigorously follow mathematical and physical principles, in an attempt to support clinical decision making. This requires reliable, high-fidelity algorithms with a short time-to-solution. This task is complicated by model and data uncertainties, and by the fact that PDE-constrained optimization problems are ill-posed in nature, and in general yield high-dimensional, severely ill-conditioned systems after discretization. These features make regularization, effective preconditioners, and iterative solvers that, in many cases, have to be implemented on distributed-memory architectures to be practical, a prerequisite. We showcase state-of-the-art techniques in scientific computing to tackle these challenges.

[1]  J. Murray,et al.  Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy , 2002, British Journal of Cancer.

[2]  Ronald M. Summers,et al.  Patient specific tumor growth prediction using multimodal images , 2014, Medical Image Anal..

[3]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[4]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[5]  T E Yankeelov,et al.  Selection, calibration, and validation of models of tumor growth. , 2016, Mathematical models & methods in applied sciences : M3AS.

[6]  Harald Garcke,et al.  A coupled surface-Cahn--Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes , 2015, 1509.03655.

[7]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[8]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[9]  Raymond J Kim,et al.  Technology Insight: MRI of the myocardium , 2005, Nature Clinical Practice Cardiovascular Medicine.

[10]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[11]  Kazufumi Ito,et al.  Optimal Control Formulation for Determining Optical Flow , 2002, SIAM J. Sci. Comput..

[12]  T. Buzug,et al.  Biophysical modeling of brain tumor progression: From unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. , 2012, Medical physics.

[13]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[14]  Hervé Delingette,et al.  Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins , 2010, Medical Image Anal..

[15]  Christos Davatzikos,et al.  A Comparative Study of Biomechanical Simulators in Deformable Registration of Brain Tumor Images , 2008, IEEE Transactions on Biomedical Engineering.

[16]  George Biros,et al.  An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration , 2014, SIAM J. Imaging Sci..

[17]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[18]  O. Ghattas,et al.  Parallel Netwon-Krylov Methods for PDE-Constrained Optimization , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[19]  J. Geweke,et al.  On markov chain monte carlo methods for nonlinear and non-gaussian state-space models , 1999 .

[20]  Andreas Mang Methoden zur numerischen Simulation der Progression von Gliomen , 2014 .

[21]  Kristin R. Swanson,et al.  The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion , 2007, Journal of neuropathology and experimental neurology.

[22]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[23]  Nicholas Ayache,et al.  Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach , 2008, MICCAI.

[24]  David A Bluemke,et al.  Regional myocardial function: advances in MR imaging and analysis. , 2003, Radiographics : a review publication of the Radiological Society of North America, Inc.

[25]  D. Knopoff,et al.  A mathematical method for parameter estimation in a tumor growth model , 2017 .

[26]  Dinggang Shen,et al.  Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth , 2009, NeuroImage.

[27]  Simon R. Arridge,et al.  A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation , 2013 .

[28]  Imran A. Pirwani,et al.  Introduction to the Non-rigid Image Registration Evaluation Project (NIREP) , 2006, WBIR.

[29]  Kanglin Chen,et al.  Optimal control based image sequence interpolation , 2011 .

[30]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[31]  Dinggang Shen,et al.  Consistent Estimation of Cardiac Motions by 4D Image Registration , 2005, MICCAI.

[32]  James S. Duncan,et al.  Estimation of 3-D left ventricular deformation from medical images using biomechanical models , 2002, IEEE Transactions on Medical Imaging.

[33]  Hervé Delingette,et al.  Personalization of Cardiac Motion and Contractility From Images Using Variational Data Assimilation , 2012, IEEE Transactions on Biomedical Engineering.

[34]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[35]  J. Tinsley Oden,et al.  SELECTION AND ASSESSMENT OF PHENOMENOLOGICAL MODELS OF TUMOR GROWTH , 2013 .

[36]  J. Tinsley Oden,et al.  Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth , 2012, Journal of Mathematical Biology.

[37]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[38]  Pheng-Ann Heng,et al.  Accelerating Neuroimage Registration through Parallel Computation of Similarity Metric , 2015, PloS one.

[39]  Youbing Yin,et al.  Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs , 2016, Comput. Methods Programs Biomed..

[40]  J. Oden,et al.  Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data. , 2017, Computer methods in applied mechanics and engineering.

[41]  James S. Duncan,et al.  Estimation of 3D left ventricular deformation from echocardiography , 2001, Medical Image Anal..

[42]  Martin Jägersand,et al.  Tumor invasion margin on the Riemannian space of brain fibers , 2012, Medical Image Anal..

[43]  Michael I. Miller,et al.  A Diffeomorphic Approach to Multimodal Registration with Mutual Information: Applications to CLARITY Mouse Brain Images , 2016, ArXiv.

[44]  Angelo Iollo,et al.  An inverse problem for the recovery of the vascularization of a tumor , 2014 .

[45]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[46]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[47]  Su Ruan,et al.  Prediction of Lung Tumor Evolution During Radiotherapy in Individual Patients With PET , 2014, IEEE Transactions on Medical Imaging.

[48]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[49]  Arthur W. Toga,et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template , 2008, NeuroImage.

[50]  Christos Davatzikos,et al.  Modeling Glioma Growth and Mass Effect in 3D MR Images of the Brain , 2007, MICCAI.

[51]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[52]  Leonie Moench,et al.  Large Scale Pde Constrained Optimization , 2016 .

[53]  Georg Stadler,et al.  Discretely Exact Derivatives for Hyperbolic PDE-Constrained Optimization Problems Discretized by the Discontinuous Galerkin Method , 2013, Journal of Scientific Computing.

[54]  El Mostafa Kalmoun,et al.  Line Search Multilevel Optimization as Computational Methods for Dense Optical Flow , 2011, SIAM J. Imaging Sci..

[55]  John D. Owens,et al.  Fast Deformable Registration on the GPU: A CUDA Implementation of Demons , 2008, 2008 International Conference on Computational Sciences and Its Applications.

[56]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[57]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[58]  Thomas S. Deisboeck,et al.  Computational modeling of brain tumors: discrete, continuum or hybrid? , 2009 .

[59]  J. Modersitzki,et al.  Ill-posed medicine—an introduction to image registration , 2008 .

[60]  Jan Modersitzki,et al.  FAIR: Flexible Algorithms for Image Registration , 2009 .

[61]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[62]  C. Schnörr,et al.  Optical Stokes Flow Estimation: An Imaging‐Based Control Approach , 2006 .

[63]  Isabel N. Figueiredo,et al.  Image-Driven Parameter Estimation in Absorption-Diffusion Models of Chromoscopy , 2011, SIAM J. Imaging Sci..

[64]  Daniel Rueckert,et al.  Construction of a 4D Statistical Atlas of the Cardiac Anatomy and Its Use in Classification , 2005, MICCAI.

[65]  Kristin R. Swanson,et al.  Patient-Specific Mathematical Neuro-Oncology: Using a Simple Proliferation and Invasion Tumor Model to Inform Clinical Practice , 2015, Bulletin of mathematical biology.

[66]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[67]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[68]  Guillaume Bal,et al.  Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer , 2006, SIAM J. Sci. Comput..

[69]  Stefan Becker,et al.  Cyclic Numerical Time Integration in Variational Non-Rigid Image Registration based on Quadratic Regularisation , 2012, VMV.

[70]  J. Murray,et al.  A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.

[71]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[72]  Jens H. Krüger,et al.  Fast Parallel Unbiased Diffeomorphic Atlas Construction on Multi-Graphics Processing Units , 2009, EGPGV@Eurographics.

[73]  Assad A. Oberai,et al.  INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .

[74]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[75]  Pedro Valero-Lara,et al.  Multi-GPU acceleration of DARTEL (early detection of Alzheimer) , 2014, 2014 IEEE International Conference on Cluster Computing (CLUSTER).

[76]  Eldad Haber,et al.  A Multilevel Method for the Solution of Time Dependent Optimal Transport , 2015 .

[77]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[78]  Laurent Sarry,et al.  Estimation of Myocardial Strain and Contraction Phase From Cine MRI Using Variational Data Assimilation , 2016, IEEE Transactions on Medical Imaging.

[79]  Antti Honkela,et al.  A Generative Approach for Image-Based Modeling of Tumor Growth , 2011, IPMI.

[80]  J. Geweke,et al.  Note on the Sampling Distribution for the Metropolis-Hastings Algorithm , 2003 .

[81]  Viorel Barbu,et al.  An optimal control approach to the optical flow problem , 2016, Syst. Control. Lett..

[82]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[83]  Christos Davatzikos,et al.  Biomechanically-Constrained 4D Estimation of Myocardial Motion , 2009, MICCAI.

[84]  Gallagher Pryor,et al.  3D nonrigid registration via optimal mass transport on the GPU , 2009, Medical Image Anal..

[85]  Damián R. Fernández,et al.  Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method , 2014, Appl. Math. Comput..

[86]  Hervé Delingette,et al.  An electromechanical model of the heart for image analysis and simulation , 2006, IEEE Transactions on Medical Imaging.

[87]  K. Swanson,et al.  Modeling Tumor-Associated Edema in Gliomas during Anti-Angiogenic Therapy and Its Impact on Imageable Tumor , 2013, Front. Oncol..

[88]  Christos Davatzikos,et al.  Finite Element Modeling of Brain Tumor Mass-Effect from 3D Medical Images , 2005, MICCAI.

[89]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[90]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[91]  Karl J. Friston,et al.  Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation , 2011, NeuroImage.

[92]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[93]  Valeria Simoncini,et al.  Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems , 2012, Computational Optimization and Applications.

[94]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[95]  Monica Hernandez,et al.  Registration of Anatomical Images Using Paths of Diffeomorphisms Parameterized with Stationary Vector Field Flows , 2009, International Journal of Computer Vision.

[96]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[97]  Ronald M. Summers,et al.  Kidney Tumor Growth Prediction by Coupling Reaction–Diffusion and Biomechanical Model , 2013, IEEE Transactions on Biomedical Engineering.

[98]  Isabel N. Figueiredo,et al.  Physiologic Parameter Estimation Using Inverse Problems , 2013, SIAM J. Appl. Math..

[99]  Stefan Sommer Accelerating multi-scale flows for LDDKBM diffeomorphic registration , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[100]  Oskar M. Skrinjar,et al.  Myocardial Deformation Recovery Using a 3D Biventricular Incompressible Model , 2006, WBIR.

[101]  George Biros,et al.  Constrained H1-Regularization Schemes for Diffeomorphic Image Registration , 2015, SIAM J. Imaging Sci..

[102]  Harald Garcke,et al.  A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport , 2015, 1508.00437.

[103]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[104]  E. Haber,et al.  Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .

[105]  Jan Rühaak,et al.  A matrix-free approach to efficient affine-linear image registration on CPU and GPU , 2017, Journal of Real-Time Image Processing.

[106]  Thorsten M. Buzug,et al.  Modelling of glioblastoma growth by linking a molecular interaction network with an agent-based model , 2013 .

[107]  Nicola Bellomo,et al.  On the foundations of cancer modelling: Selected topics, speculations, and perspectives , 2008 .

[108]  Andreas Griewank,et al.  Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .

[109]  Martin Stoll,et al.  Fast Iterative Solution of Reaction-Diffusion Control Problems Arising from Chemical Processes , 2013, SIAM J. Sci. Comput..

[110]  P. Thomas Fletcher,et al.  Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability , 2015, Medical Image Anal..

[111]  W. Zulehner,et al.  Simultaneous optical flow and source estimation: Space–time discretization and preconditioning , 2015, Applied numerical mathematics : transactions of IMACS.

[112]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[113]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[114]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[115]  Ronald M. Summers,et al.  Pancreatic Tumor Growth Prediction With Elastic-Growth Decomposition, Image-Derived Motion, and FDM-FEM Coupling , 2017, IEEE Transactions on Medical Imaging.

[116]  M. Heinkenschloss,et al.  Real-Time PDE-Constrained Optimization , 2007 .

[117]  A. Joshi,et al.  Adaptive finite element based tomography for fluorescence optical imaging in tissue. , 2004, Optics express.

[118]  George Biros,et al.  Distributed-Memory Large Deformation Diffeomorphic 3D Image Registration , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[119]  Hervé Delingette,et al.  Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation , 2005, IEEE Transactions on Medical Imaging.

[120]  K. Swanson,et al.  A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle , 2007, British Journal of Cancer.

[121]  Hervé Delingette,et al.  Tumor growth parameters estimation and source localization from a unique time point: Application to low-grade gliomas , 2013, Comput. Vis. Image Underst..

[122]  Thomas E Yankeelov,et al.  Three-dimensional Image-based Mechanical Modeling for Predicting the Response of Breast Cancer to Neoadjuvant Therapy. , 2017, Computer methods in applied mechanics and engineering.

[123]  Christos Davatzikos,et al.  Brain--Tumor Interaction Biophysical Models for Medical Image Registration , 2008, SIAM J. Sci. Comput..

[124]  Eldad Haber,et al.  Geophysical Imaging of Fluid Flow in Porous Media , 2014, SIAM J. Sci. Comput..

[125]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[126]  Cai Grau,et al.  GPU Accelerated Viscous-fluid Deformable Registration for Radiotherapy , 2008, MMVR.

[127]  Lars Ruthotto,et al.  A Lagrangian Gauss-Newton-Krylov Solver for Mass- and Intensity-Preserving Diffeomorphic Image Registration , 2017, SIAM J. Sci. Comput..

[128]  Daniel Rueckert,et al.  Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation , 2011, International Journal of Computer Vision.

[129]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[130]  Hervé Delingette,et al.  Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations , 2010, IEEE Transactions on Medical Imaging.

[131]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[132]  L. Younes Shapes and Diffeomorphisms , 2010 .

[133]  Max D. Gunzburger,et al.  An Optimal Control Formulation of an Image Registration Problem , 2009, Journal of Mathematical Imaging and Vision.

[134]  Yusheng Feng,et al.  A fully coupled space-time multiscale modeling framework for predicting tumor growth. , 2017, Computer methods in applied mechanics and engineering.

[135]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..

[136]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[137]  E. McVeigh,et al.  Regional myocardial function. , 1998, Cardiology clinics.

[138]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[139]  Jingfeng Jiang,et al.  Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis , 2012, IEEE Transactions on Medical Imaging.

[140]  Hervé Delingette,et al.  Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model , 2017, IEEE Transactions on Medical Imaging.

[141]  George Biros,et al.  A Semi-Lagrangian two-level preconditioned Newton-Krylov solver for constrained diffeomorphic image registration , 2016, SIAM J. Sci. Comput..

[142]  Matthias Heinkenschloss,et al.  A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems , 2005 .

[143]  Dhairya Malhotra,et al.  AccFFT: A library for distributed-memory FFT on CPU and GPU architectures , 2015, ArXiv.

[144]  Ernesto A. B. F. Lima,et al.  A hybrid ten-species phase-field model of tumor growth , 2014 .

[145]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[146]  G Powathil,et al.  Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy , 2007, Physics in medicine and biology.

[147]  Max D. Gunzburger,et al.  Analysis of Finite Element Discretizations of an Optimal Control Formulation of the Image Registration Problem , 2011, SIAM J. Numer. Anal..

[148]  Christos Davatzikos,et al.  GLISTR: Glioma Image Segmentation and Registration , 2012, IEEE Transactions on Medical Imaging.

[149]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[150]  Martin Burger,et al.  A Hyperelastic Regularization Energy for Image Registration , 2013, SIAM J. Sci. Comput..

[151]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[152]  Jordan Matelsky,et al.  A Large Deformation Diffeomorphic Approach to Registration of CLARITY Images via Mutual Information , 2017, MICCAI.

[153]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[154]  Elizabeth A. Krupinski,et al.  MR Imaging of Arrhythmogenic Right Ventricular Cardiomyopathy: Morphologic Findings and Interobserver Reliability , 2003, Cardiology.

[155]  Stefan Becker,et al.  A Novel Method for Simulating the Extracellular Matrix in Models of Tumour Growth , 2012, Comput. Math. Methods Medicine.

[156]  Murat Manguoglu,et al.  Parallel scalable PDE-constrained optimization: antenna identification in hyperthermia cancer treatment planning , 2009, Computer Science - Research and Development.

[157]  Michele Benzi,et al.  Multilevel Algorithms for Large-Scale Interior Point Methods , 2009, SIAM J. Sci. Comput..

[158]  Richard W. Vuduc,et al.  On the communication complexity of 3D FFTs and its implications for Exascale , 2012, ICS '12.

[159]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[160]  R. Pinnau,et al.  Elastic image registration with exact mass preservation , 2016, 1609.04043.

[161]  K Hendrickson,et al.  Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach , 2010, Physics in medicine and biology.

[162]  Maxime Sermesant,et al.  Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties , 2005, FIMH.

[163]  M. Miller Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.

[164]  David A. Hormuth II,et al.  Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data , 2015, Physical biology.

[165]  George Karypis,et al.  Introduction to Parallel Computing , 1994 .

[166]  Daniel Rueckert,et al.  Fast Spatio-temporal Free-Form Registration of Cardiac MR Image Sequences , 2004, FIMH.

[167]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[168]  L. Younes Jacobi fields in groups of diffeomorphisms and applications , 2007 .

[169]  Nagarajan Kandasamy,et al.  High Performance Deformable Image Registration Algorithms for Manycore Processors , 2013 .

[170]  Leon Axel,et al.  Biomechanical dynamics of the heart with MRI. , 2002, Annual review of biomedical engineering.

[171]  Dinggang Shen,et al.  Parallel optimization of tumor model parameters for fast registration of brain tumor images , 2008, SPIE Medical Imaging.

[172]  Steve B Jiang,et al.  Implementation and evaluation of various demons deformable image registration algorithms on a GPU. , 2010, Physics in medicine and biology.

[173]  Fredi Tröltzsch,et al.  Optimal boundary control of a system of reaction diffusion equations , 2010 .

[174]  Eldad Haber,et al.  A Multilevel Method for Image Registration , 2005, SIAM J. Sci. Comput..

[175]  Brian B. Avants,et al.  Lagrangian frame diffeomorphic image registration: Morphometric comparison of human and chimpanzee cortex , 2006, Medical Image Anal..

[176]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[177]  Marc Niethammer,et al.  An optimal control approach for deformable registration , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[178]  Joe Pitt-Francis,et al.  Bayesian Calibration, Validation and Uncertainty Quantification for Predictive Modelling of Tumour Growth: A Tutorial , 2017, Bulletin of Mathematical Biology.

[179]  Dirk A. Lorenz,et al.  Image Sequence Interpolation Using Optimal Control , 2010, Journal of Mathematical Imaging and Vision.

[180]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[181]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[182]  Hervé Delingette,et al.  Bayesian Personalization of Brain Tumor Growth Model , 2015, MICCAI.

[183]  S. Arridge Optical tomography in medical imaging , 1999 .

[184]  Michele Benzi,et al.  A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..

[185]  Linh K. Ha,et al.  Multiscale Unbiased Diffeomorphic Atlas Construction on Multi-GPUs , 2011 .

[186]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[187]  T. Krouskop,et al.  Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues , 1999, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[188]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[189]  Rüdiger Westermann,et al.  A survey of medical image registration on graphics hardware , 2011, Comput. Methods Programs Biomed..

[190]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[191]  Damián R. Fernández,et al.  Adjoint method for a tumor growth PDE-constrained optimization problem , 2012, Comput. Math. Appl..

[192]  Horst Bischof,et al.  A Duality Based Algorithm for TV- L 1-Optical-Flow Image Registration , 2007, MICCAI.

[193]  Roland Herzog,et al.  Fast iterative solvers for an optimal transport problem , 2018, Adv. Comput. Math..

[194]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[195]  Christos Davatzikos,et al.  A Framework for Scalable Biophysics-based Image Analysis , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[196]  Christos Davatzikos,et al.  An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.

[197]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[198]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[199]  Rodney A. Kennedy,et al.  Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images , 2010, Comput. Methods Programs Biomed..

[200]  George Biros,et al.  Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[201]  Stanley He,et al.  MYCN and the epigenome , 2013, Front. Oncol..

[202]  J. Sampson selection , 2006, Algorithm Design with Haskell.

[203]  Dimitris N. Metaxas,et al.  In vivo strain and stress estimation of the heart left and right ventricles from MRI images , 2003, Medical Image Anal..

[204]  Chandrasekhar Venkataraman,et al.  Parameter identification problems in the modelling of cell motility , 2013, Journal of mathematical biology.

[205]  Yali Amit,et al.  A Nonlinear Variational Problem for Image Matching , 1994, SIAM J. Sci. Comput..

[206]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[207]  L. Ambrosio The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems , 2011 .

[208]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[209]  G. Biros,et al.  An inverse problem formulation for parameter estimation of a reaction–diffusion model of low grade gliomas , 2014, Journal of mathematical biology.

[210]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[211]  Anders Eklund,et al.  Medical image processing on the GPU - Past, present and future , 2013, Medical Image Anal..

[212]  Paul E Kinahan,et al.  Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images. , 2011, Mathematical medicine and biology : a journal of the IMA.

[213]  J. C. Gore,et al.  Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth , 2012, Physics in medicine and biology.

[214]  Andreas Griewank,et al.  Trends in PDE Constrained Optimization , 2014 .

[215]  Christos Davatzikos,et al.  Coupling brain-tumor biophysical models and diffeomorphic image registration. , 2017, Computer methods in applied mechanics and engineering.

[216]  Ronald M. Summers,et al.  Pancreatic Tumor Growth Prediction with Multiplicative Growth and Image-Derived Motion , 2015, IPMI.

[217]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[218]  Rodney A. Kennedy,et al.  A Survey of Medical Image Registration on Multicore and the GPU , 2010, IEEE Signal Processing Magazine.

[219]  Georg Stadler,et al.  A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..