On the lower bound of the spectral norm of symmetric random matrices with independent entries

We show that the spectral radius of an $N\times N$ random symmetric matrix with i.i.d. bounded centered but non-symmetrically distributed entries is bounded from below by $ 2 \sigma - o( N^{-6/11+\varepsilon}), $ where $\sigma^2 $ is the variance of the matrix entries and $\varepsilon $ is an arbitrary small positive number. Combining with our previous result from [7], this proves that for any $\varepsilon >0, \ $ one has $ \|A_N\| =2 \sigma + o( N^{-6/11+\varepsilon}) $ with probability going to $ 1 $ as $N \to \infty$.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[3]  L. Arnold,et al.  On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .

[4]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[5]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[6]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[7]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[8]  Alexander Soshnikov,et al.  Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .

[9]  A. Soshnikov,et al.  A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices , 1998 .

[10]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[11]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[12]  N. Alon,et al.  On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.

[13]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[14]  M. Ledoux The concentration of measure phenomenon , 2001 .

[15]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[16]  Wigner Random Matrices with Non-Symmetrically Distributed Entries , 2007, math/0702035.