Mechanical and elastocaloric effect of Fe and Co co-doped Ni–Mn–Al ferromagnetic shape memory alloys

[1]  Kewei Zhang,et al.  Enhanced elastocaloric effect and mechanical properties of Gd-doped Ni–Mn–Sn-Gd ferromagnetic shape memory alloys , 2020 .

[2]  Yanjing Su,et al.  Tuning the operation temperature window of the elastocaloric effect in Cu–Al–Mn shape memory alloys by composition design , 2020 .

[3]  C. Esling,et al.  Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy , 2020 .

[4]  Jian Liu,et al.  Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys , 2020 .

[5]  L. Geng,et al.  Grain structure related inhomogeneous elastocaloric effects in Cu–Al–Mn shape memory microwires , 2020 .

[6]  A. Kitanovski,et al.  Thermal control elements for caloric energy conversion , 2020, Renewable and Sustainable Energy Reviews.

[7]  Xi Li,et al.  Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy , 2020 .

[8]  C. Esling,et al.  Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies , 2019 .

[9]  P. Han,et al.  Magnetocaloric and Elastocaloric Effects in All‐d‐Metal Ni37Co9Fe4Mn35Ti15 Magnetic Shape Memory Alloy , 2019, physica status solidi (a).

[10]  P. Han,et al.  The effect of Co on elastocaloric and mechanical properties of Ni-Co-Mn-Al alloys , 2019, Solid State Communications.

[11]  Youwei Du,et al.  Enhanced elastocaloric effect and mechanical properties of Fe-doped Ni–Mn–Al ferromagnetic shape memory alloys , 2019, Intermetallics.

[12]  Lin Zhou,et al.  Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing , 2019, Science.

[13]  L. Mañosa,et al.  Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy , 2019, Acta Materialia.

[14]  L. Mañosa,et al.  Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. , 2019, Physical review letters.

[15]  Xin Lin,et al.  Large superelastic recovery and elastocaloric effect in as-deposited additive manufactured Ni50.8Ti49.2 alloy , 2019, Applied Physics Letters.

[16]  Xi Li,et al.  Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy , 2019, Scripta Materialia.

[17]  Wei Sun,et al.  Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys , 2019, Scripta Materialia.

[18]  Xi Li,et al.  Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain , 2019, Scripta Materialia.

[19]  Pan Wang,et al.  Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-In polycrystals , 2019, Applied Physics Letters.

[20]  Wen-ru Sun,et al.  Influence of Cr on microstructure and elastocaloric effect in Ni–Mn–In–Co–Cr polycrystalline alloys , 2018, Physics Letters A.

[21]  Jian Liu,et al.  Microstructure, martensitic transformation and elastocaloric effect in Pd-In-Fe polycrystalline shape memory alloys , 2018, Intermetallics.

[22]  Youwei Du,et al.  Large Magnetocaloric Effect and Magnetoresistance in Fe and Co Co‐Doped Ni‐Mn‐Al Heusler Alloys , 2018 .

[23]  W. Cai,et al.  Martensitic transformation and mechanical properties in Ni–Co–Mn–In–Gd metamagnetic shape memory alloys , 2018 .

[24]  F. Hernández-Navarro,et al.  The influence of texture on the reversible elastocaloric effect of a polycrystalline Ni50Mn32In16Cr2 alloy , 2018 .

[25]  X. Ren,et al.  Combination of conventional elastocaloric and magnetocaloric effects in a Co37Ni35Al28 ferromagnetic shape memory alloy , 2018 .

[26]  Jianguo Li,et al.  Martensite transformation, mechanical properties and shape memory effects of Ni-Mn-In-Mg shape memory alloys , 2018 .

[27]  Yanghoo Kim,et al.  Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7 shape memory alloy , 2018 .

[28]  Jianlin Yu,et al.  The mechanism of ΔT variation in coupled heat transfer and phase transformation for elastocaloric materials and its application in materials characterization , 2017 .

[29]  Yinshan Feng,et al.  Modeling and analysis of an integrated solid state elastocaloric heat pumping system , 2017 .

[30]  Yandong Wang,et al.  Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys , 2017 .

[31]  Wen-ru Sun,et al.  An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45 - xSn11Cux alloys , 2017 .

[32]  W. Cai,et al.  Effect of Gd addition on microstructure, martensitic transformation and mechanical properties of Ni50Mn36Sn14 ferromagnetic shape memory alloy , 2017 .

[33]  Yufeng Zheng,et al.  Microstructure, phase transformation and mechanical property of Nb-doped Ni–Mn–Ga alloys , 2015 .

[34]  Guangheng Wu,et al.  MARTENSITIC TRANSFORMATION AND MAGNETIC PROPERTIES OF NiMnAl:Fe, Co FERROMAGNETIC SHAPE MEMORY ALLOYS , 2013 .

[35]  Won Bae Han,et al.  Phase transitions and magnetocaloric effect of Ni1.7Co0.3Mn1+xAl1−x Heusler alloys , 2013 .

[36]  W. Cai,et al.  Microstructure, phase transformation and mechanical properties of Ni–Mn–Ga–Y magnetic shape memory alloys , 2011 .

[37]  Chengbao Jiang,et al.  Study of Ni–Mn–Ga–Cu as single-phase wide-hysteresis shape memory alloys , 2011 .

[38]  W. Cai,et al.  Structure and shape memory effect in a Ni54Mn25Ga20Gd1 alloy with a high transformation temperature , 2011 .

[39]  Xingjun Liu,et al.  Ni56Mn25−xCuxGa19 (x = 0, 1, 2, 4, 8) high-temperature shape-memory alloys , 2009 .

[40]  W. Cai,et al.  Martensitic transformation and mechanical properties of polycrystalline Ni50Mn29Ga21−xGdx ferromagnetic shape memory alloys , 2006 .