Single-cell genomics improves the discovery of risk variants and genes of cardiac traits

Genome-wide association studies (GWAS) have linked hundreds of loci to cardiac diseases. However, in most loci the causal variants and their target genes remain unknown. We developed a combined experimental and analytical approach that integrates single cell epigenomics with GWAS to prioritize risk variants and genes. We profiled accessible chromatin in single cells obtained from human hearts and leveraged the data to study genetics of Atrial Fibrillation (AF), the most common cardiac arrhythmia. Enrichment analysis of AF risk variants using cell-type-resolved open chromatin regions (OCRs) implicated cardiomyocytes as the main mediator of AF risk. We then performed statistical fine-mapping, leveraging the information in OCRs, and identified putative causal variants in 122 AF-associated loci. Taking advantage of the fine-mapping results, our novel statistical procedure for gene discovery prioritized 45 high-confidence risk genes, highlighting transcription factors and signal transduction pathways important for heart development. We further leveraged our single-cell data to study genetics of gene expression. An unexpected finding from earlier studies is that expression QTLs (eQTLs) are often shared across tissues even though most regulatory elements are cell-type specific. We found that this sharing is largely driven by the limited power of eQTL studies using bulk tissues to detect cell-type-specific regulatory variants. This finding points to an important limitation of using eQTLs to interpret GWAS of complex traits. In summary, our analysis provides a comprehensive map of AF risk variants and genes, and a general framework to integrate single-cell genomics with genetic studies of complex traits.

[1]  Haifeng Yin,et al.  TAB2 deficiency induces dilated cardiomyopathy by promoting RIPK1-dependent apoptosis and necroptosis , 2022, The Journal of clinical investigation.

[2]  B. Manfroi,et al.  The number 13 of the family: a proliferation inducing ligand. , 2021, Current opinion in immunology.

[3]  Kyle J. Gaulton,et al.  Interpreting type 1 diabetes risk with genetics and single-cell epigenomics , 2021, Nature.

[4]  A. Dobin,et al.  STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data , 2021, bioRxiv.

[5]  Ryan L. Collins,et al.  Genome-wide enhancer maps link risk variants to disease genes , 2021, Nature.

[6]  Kyle J. Gaulton,et al.  Single cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk , 2021, Nature Genetics.

[7]  Howard Y. Chang,et al.  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis , 2021, Nature Genetics.

[8]  Correction to: Cardiac Pressure Overload Decreases ETV1 Expression in the Left Atrium, Contributing to Atrial Electrical and Structural Remodeling. , 2021, Circulation.

[9]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[10]  Nadezhda T. Doncheva,et al.  The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets , 2020, Nucleic Acids Res..

[11]  Kyle J. Gaulton,et al.  Cardiac cell type–specific gene regulatory programs and disease risk association , 2020, Science Advances.

[12]  M. Chung,et al.  Cardiac Pressure Overload Decreases ETV1 Expression in the Left Atrium, Contributing to Atrial Electrical and Structural Remodeling. , 2020, Circulation.

[13]  Howard Y. Chang,et al.  Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases , 2020, Nature Genetics.

[14]  G. Sabio,et al.  p38 MAPK Pathway in the Heart: New Insights in Health and Disease , 2020, International journal of molecular sciences.

[15]  Catherine L. Worth,et al.  Cells of the adult human heart , 2020, Nature.

[16]  D. Franco,et al.  Genetics and Epigenetics of Atrial Fibrillation , 2020, International journal of molecular sciences.

[17]  M. Stephens,et al.  A simple new approach to variable selection in regression, with application to genetic fine mapping , 2020, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[18]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[19]  P. Kirchhof,et al.  Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation , 2020, Circulation research.

[20]  E. Benjamin,et al.  Epidemiology of Atrial Fibrillation in the 21st Century , 2020, Circulation research.

[21]  Patrick T. Ellinor,et al.  Genetics of Atrial Fibrillation in 2020 , 2020, Circulation research.

[22]  P. Ellinor,et al.  Identification of Functional Variant Enhancers Associated With Atrial Fibrillation , 2020, Circulation research.

[23]  Ting Huang,et al.  AKAP5 anchors PKA to enhance regulation of the HERG channel. , 2020, The international journal of biochemistry & cell biology.

[24]  Matthias Heinig,et al.  The single-cell eQTLGen consortium , 2020, eLife.

[25]  Wahab A. Khan,et al.  Haploinsufficiency of the basic helix–loop–helix transcription factor HAND2 causes congenital heart defects , 2020, American journal of medical genetics. Part A.

[26]  K. Ardlie,et al.  Transcriptional and Cellular Diversity of the Human Heart , 2020, bioRxiv.

[27]  Mark I. McCarthy,et al.  A brief history of human disease genetics , 2020, Nature.

[28]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[29]  K. Lunetta,et al.  Monogenic and Polygenic Contributions to Atrial Fibrillation Risk , 2020, Circulation research.

[30]  L. Bonewald,et al.  Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells , 2019, Cell cycle.

[31]  Thawfeek M. Varusai,et al.  The reactome pathway knowledgebase , 2019, Nucleic Acids Res..

[32]  Christopher R. Weber,et al.  Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. , 2019, The Journal of clinical investigation.

[33]  Matthew C. Hill,et al.  Identification of atrial fibrillation associated genes and functional non-coding variants , 2019, Nature Communications.

[34]  Matti Pirinen,et al.  Functionally-informed fine-mapping and polygenic localization of complex trait heritability , 2019, Nature Genetics.

[35]  Christopher M. DeBoever,et al.  Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits , 2019, Nature Genetics.

[36]  Alkes L. Price,et al.  Quantifying genetic effects on disease mediated by assayed gene expression levels , 2019, Nature Genetics.

[37]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[38]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[39]  E. Boerwinkle,et al.  Multiple SCN5A variant enhancers modulate its cardiac gene expression and the QT interval , 2019, Proceedings of the National Academy of Sciences.

[40]  Howard Y. Chang,et al.  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion , 2019, Nature Biotechnology.

[41]  Meixiang Xiang,et al.  Essential roles of EphrinB2 in mammalian heart: from development to diseases , 2019, Cell Communication and Signaling.

[42]  Y. Gilad,et al.  Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation , 2019, Scientific Reports.

[43]  Francisco J. Alvarado,et al.  A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice , 2019, eLife.

[44]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[45]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[46]  M. Stephens,et al.  Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions , 2016, Nature Genetics.

[47]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[48]  O. Birk,et al.  Nocturnal Atrial Fibrillation Caused by Mutation in KCND2, Encoding Pore-Forming (&agr;) Subunit of the Cardiac Kv4.2 Potassium Channel , 2018, Circulation. Genomic and precision medicine.

[49]  J. Greenbaum,et al.  Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression , 2018, Cell.

[50]  S. Rasmussen,et al.  Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation , 2018, Nature Communications.

[51]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[52]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[53]  H. Rockman,et al.  G-Protein–Coupled Receptors in Heart Disease , 2018, Circulation research.

[54]  Tanya M. Teslovich,et al.  Biobank-driven genomic discovery yields new insight into atrial fibrillation biology , 2018, Nature Genetics.

[55]  M. Mann,et al.  The Transcription Factor ETV1 Induces Atrial Remodeling and Arrhythmia , 2018, Circulation research.

[56]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[57]  Jay A. Montgomery,et al.  Multi-ethnic genome-wide association study for atrial fibrillation , 2018, Nature Genetics.

[58]  Ivy Aneas,et al.  A promoter interaction map for cardiovascular disease genetics , 2018, bioRxiv.

[59]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[60]  D. Schaid,et al.  From genome-wide associations to candidate causal variants by statistical fine-mapping , 2018, Nature Reviews Genetics.

[61]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[62]  M. G. van der Wijst,et al.  Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs , 2018, Nature Genetics.

[63]  M. Chung,et al.  Genetic Control of Left Atrial Gene Expression Yields Insights into the Genetic Susceptibility for Atrial Fibrillation , 2018, Circulation. Genomic and precision medicine.

[64]  W. Matthijs Blankesteijn,et al.  WNT Signaling in Cardiac and Vascular Disease , 2018, Pharmacological Reviews.

[65]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[66]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[67]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[68]  S. Nattel Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. , 2017, JACC. Clinical electrophysiology.

[69]  Alicia N. Schep,et al.  ChromVAR: Inferring transcription factor variation from single-cell epigenomic data , 2017, bioRxiv.

[70]  Nikolaos A Patsopoulos,et al.  Limited statistical evidence for shared genetic effects of eQTLs and autoimmune disease-associated loci in three major immune cell types , 2017, Nature Genetics.

[71]  Paul Flicek,et al.  The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data , 2016, Nucleic Acids Res..

[72]  D. Roden,et al.  Transcription factor ETV1 is essential for rapid conduction in the heart. , 2016, The Journal of clinical investigation.

[73]  Xiaoquan Wen,et al.  Molecular QTL discovery incorporating genomic annotations using Bayesian false discovery rate control , 2016 .

[74]  Christopher R. Weber,et al.  Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm , 2016, Science Translational Medicine.

[75]  Xiaoquan Wen,et al.  Efficient Integrative Multi-SNP Association Analysis using Deterministic Approximation of Posteriors , 2015, bioRxiv.

[76]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[77]  Simon G. Coetzee,et al.  motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites , 2015, Bioinform..

[78]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[79]  Joseph K. Pickrell,et al.  Approximately independent linkage disequilibrium blocks in human populations , 2015, bioRxiv.

[80]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[81]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[82]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[83]  Joel Hirschhorn,et al.  SNPsnap: a Web-based tool for identification and annotation of matched SNPs , 2015, Bioinform..

[84]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[85]  H. Bai,et al.  EphB4 Forward‐Signaling Regulates Cardiac Progenitor Development in Mouse ES Cells , 2015, Journal of cellular biochemistry.

[86]  D. DiFrancesco HCN4, Sinus Bradycardia and Atrial Fibrillation. , 2014, Arrhythmia & electrophysiology review.

[87]  E. Chuang,et al.  Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation , 2014, Journal of Medical Genetics.

[88]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[89]  D. Yelon,et al.  Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration , 2014, Development.

[90]  Michael J Ackerman,et al.  Nature Genetics Advance Online Publication Genetic Association Study of Qt Interval Highlights Role for Calcium Signaling Pathways in Myocardial Repolarization , 2022 .

[91]  Robert W. Mills,et al.  Overexpression of KCNN3 results in sudden cardiac death. , 2014, Cardiovascular research.

[92]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[93]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[94]  R. Weiss,et al.  Oxidized Ca2+/Calmodulin-Dependent Protein Kinase II Triggers Atrial Fibrillation , 2013, Circulation.

[95]  H. Ohta,et al.  Pathophysiological roles of FGF signaling in the heart , 2013, Front. Physiol..

[96]  Jitka A I Virag,et al.  Ephrin-Eph signaling as a potential therapeutic target for the treatment of myocardial infarction. , 2013, Medical hypotheses.

[97]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[98]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[99]  Joseph K. Pickrell,et al.  DNaseI sensitivity QTLs are a major determinant of human expression variation , 2011, Nature.

[100]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[101]  W. Brown Framingham Heart Study. , 2011, Journal of clinical lipidology.

[102]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[103]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[104]  D. H. Kim,et al.  Characterization of calumenin in mouse heart. , 2010, BMB reports.

[105]  Christian Gieger,et al.  Genome-wide association study of PR interval , 2010, Nature Genetics.

[106]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[107]  E. Olson,et al.  Gene Regulatory Networks in the Evolution and Development of the Heart , 2006, Science.

[108]  L. Langeberg,et al.  A-kinase-anchoring proteins , 1993, Journal of Cell Science.

[109]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[110]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[111]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[112]  N J Izzo,et al.  HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[113]  B. Morgan,et al.  Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation , 1997, The EMBO journal.

[114]  D. Levy,et al.  Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. , 1994, JAMA.

[115]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .