The linear power spectrum of observed source number counts
暂无分享,去创建一个
[1] O. Lahav,et al. Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.
[2] Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements , 2006, astro-ph/0611539.
[3] A. Lewis,et al. Lensed CMB power spectra from all-sky correlation functions , 2005, astro-ph/0502425.
[4] Jaiyul Yoo,et al. Complete Treatment of Galaxy Two-Point Statistics: Gravitational Lensing Effects and Redshift-Space Distortions , 2008, 0808.3138.
[5] E. Gaztañaga,et al. Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space , 2007, 0706.1071.
[6] Roman Scoccimarro. Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .
[7] W. Percival,et al. Forecasting cosmological constraints from redshift surveys , 2008, 0810.1518.
[8] Jaiyul Yoo. General Relativistic Description of the Observed Galaxy Power Spectrum: Do We Understand What We Measure? , 2010, 1009.3021.
[9] Newtonian versus relativistic nonlinear cosmology , 2005, astro-ph/0512636.
[10] L. Samushia,et al. Simulating redshift-space distortions for galaxy pairs with wide angular separation , 2010, 1006.1652.
[11] R. Sachs. Gravitational waves in general relativity. VI. The outgoing radiation condition , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[12] Institute for Advanced Study,et al. New perspective on galaxy clustering as a cosmological probe: General relativistic effects , 2009, 0907.0707.
[13] A. Slosar,et al. Scale-dependent bias from primordial non-Gaussianity in general relativity , 2009, 0902.1084.
[14] T. Matsubara. The Gravitational Lensing in Redshift-Space Correlation Functions of Galaxies and Quasars , 2000, astro-ph/0004392.
[15] E. Gaztañaga,et al. Lensing corrections to features in the angular two-point correlation function and power spectrum , 2007, 0708.0031.
[16] E. Rozo,et al. Size bias in galaxy surveys. , 2009, Physical review letters.
[17] S. Matarrese,et al. Effect of inhomogeneities on the luminosity distance-redshift relation: Is dark energy necessary in a perturbed universe? , 2005, astro-ph/0501152.
[18] M. Zaldarriaga,et al. Connection between Newtonian simulations and general relativity , 2011, 1101.3555.
[19] D. Huterer,et al. Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.
[20] A. Lewis,et al. Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.
[21] M. Birkinshaw,et al. The luminosity distance in perturbed FLRW space-times , 2003, astro-ph/0310841.
[22] S. Dodelson,et al. Weak lensing effects on the galaxy three-point correlation function , 2008, 0804.0373.
[23] A. Melchiorri,et al. Searching for integrated Sachs–Wolfe effect beyond temperature anisotropies: CMB E-mode polarization–galaxy cross-correlation , 2005, astro-ph/0511054.
[24] A. Lewis,et al. Nonlinear redshift-space power spectra , 2008, 0808.1724.
[25] F. Bernardeau,et al. Full-sky lensing shear at second order , 2009, 0911.2244.
[26] Donald Hamilton,et al. The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .
[27] J. Gunn. A Fundamental Limitation on the Accuracy of Angular Measurements in Observational Cosmology , 1967 .
[28] T. Giannantonio,et al. The effect of reionization on the cosmic microwave background–density correlation , 2007, 0706.0274.
[29] Fluctuations of the luminosity distance , 2005, astro-ph/0511183.
[30] S. Dodelson,et al. Universal Weak Lensing Distortion of Cosmological Correlation Functions , 2008, 0806.0331.
[31] J. Hwang,et al. Second-order perturbations of a zero-pressure cosmological medium: Comoving versus synchronous gauge , 2006, astro-ph/0601041.
[32] M. Sasaki. The magnitude-redshift relation in a perturbed Friedmann universe , 1987 .
[33] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[34] C. Hirata. Tidal alignments as a contaminant of redshift space distortions , 2009, 0903.4929.
[35] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[36] Rebecca Whitaker Msfc. The Evolving Universe , 2008 .
[37] I. Szapudi,et al. Non-perturbative effects of geometry in wide-angle redshift distortions , 2008, 0802.2940.
[38] Redshift-Space Distortions of the Correlation Function in Wide-Angle Galaxy Surveys , 1997, astro-ph/9712007.
[39] N. Turok,et al. Looking for a cosmological constant with the Rees-Sciama effect. , 1996, Physical review letters.
[40] Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.
[41] The Correlation Function in Redshift Space: General Formula with Wide-Angle Effects and Cosmological Distortions , 1999, astro-ph/9908056.
[42] Anthony Challinor,et al. The shape of the CMB lensing bispectrum , 2011, 1101.2234.
[43] 21 cm angular-power spectrum from the dark ages , 2007, astro-ph/0702600.
[44] Uros Seljak,et al. Extracting primordial Non-Gaussianity without cosmic variance. , 2008, Physical review letters.
[45] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[46] Robert C. Nichol,et al. The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.