Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars

Abstract The long-term durability and their mechanisms of alkali-activated cement based materials have remained largely elusive. In this paper, carbonation of alkali-activated slag (AAS) mortars activated by NaOH and waterglass with different alkali dosages and silicate moduli has been investigated after exposure to 3 ± 0.2% (v/v) CO2 at 20 ± 2 °C/65 ± 5% RH for 56 days. The results show that carbonation resistance of the AAS mortars increases with increase of not only alkali dosage but also silicate modulus. In addition to the higher pore solution alkalinity and slag reaction extent, the relatively higher carbonation resistance of the AAS mortars is attributed to the lower porosity and average pore size. The loss of compressive strength for the waterglass activated slag mortars after carbonation is due to decalcification of C-A-S-H phase, whereas the carbonation of katoite contributes to the increase of compressive strength of the NaOH activated slag mortars.

[1]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to carbonation , 2001 .

[2]  D. Macphee,et al.  Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .

[3]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[4]  D. Kulik Improving the structural consistency of C-S-H solid solution thermodynamic models , 2011 .

[5]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[6]  Serdar Aydın,et al.  Effect of activator type and content on properties of alkali-activated slag mortars , 2014 .

[7]  Patrick Dangla,et al.  Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics , 2007 .

[8]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[9]  Alexander Steffens,et al.  Modeling carbonation for corrosion risk prediction of concrete structures , 2002 .

[10]  C. Shi,et al.  Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation , 2017 .

[11]  Josef Kaufmann,et al.  Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars , 2016 .

[12]  A. Fernández-Jiménez,et al.  FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H , 2008 .

[13]  John L. Provis,et al.  Natural carbonation of aged alkali-activated slag concretes , 2014 .

[14]  Fengting Li,et al.  Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. , 2008, Journal of hazardous materials.

[15]  Jan Deja,et al.  Carbonation aspects of alkali activated slag mortars and concretes , 2002 .

[16]  Susan A. Bernal,et al.  Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials , 2015 .

[17]  Tarja Häkkinen,et al.  THE INFLUENCE OF SLAG CONTENT ON THE MICROSTRUCTURE, PERMEABILITY AND MECHANICAL PROPERTIES OF CONCRETE. PART 1: MICROSTRUCTURAL STUDIES AND BASIC MECHANICAL PROPERTIES , 1993 .

[18]  S. Ferreiro,et al.  Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders , 2017 .

[19]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[20]  Keun-Hyeok Yang,et al.  Properties of cementless mortars activated by sodium silicate , 2008 .

[21]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[22]  M. P. Méndez,et al.  Study of the strength developed by stable carbonated phases in high alumina cement , 1984 .

[23]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[24]  M. Chi Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete , 2012 .

[25]  Luca Bertolini,et al.  Corrosion of Steel in Concrete , 2013 .

[26]  Mitsuo Sato,et al.  Structure of vaterite and infrared spectra , 1969 .

[27]  David W. Law,et al.  Durability assessment of alkali activated slag (AAS) concrete , 2012 .

[28]  Francisca Puertas,et al.  Hormigón alternativo basado en escorias activadas alcalinamente , 2008 .

[29]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[30]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[31]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[32]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[33]  R. Cloots,et al.  (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement , 2006 .

[34]  S. Al-Otaibi,et al.  Durability of concrete incorporating GGBS activated by water-glass , 2008 .

[35]  E. Rodríguez,et al.  Hormigón alternativo basado en escorias activadas alcalinamente Alternative concrete based on alkali-activated slag , 2008 .

[36]  Paul F. McMillan,et al.  Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .

[37]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[38]  S. Musić,et al.  Precipitation of amorphous SiO2 particles and their properties , 2011 .

[39]  C. Shi,et al.  Durability of alkali-activated materials in aggressive environments: A review on recent studies , 2017 .

[40]  J. I. Escalante-García,et al.  Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements , 2010 .

[41]  Rupert J. Myers,et al.  Phase diagrams for alkali-activated slag binders , 2017 .

[42]  F. Puertas,et al.  Carbonation process of alkali-activated slag mortars , 2006 .

[43]  Michael N. Fardis,et al.  Experimental investigation and mathematical modeling of the concrete carbonation problem , 1991 .

[44]  J. I. Escalante-García,et al.  Hydration Products and Reactivity of Blast‐Furnace Slag Activated by Various Alkalis , 2003 .

[45]  J. Nicholas Thermogravimetric Analysis , 1954, Nature.

[46]  Patrick Dangla,et al.  Investigation of the carbonation mechanism of \{CH\} and C-S-H in terms of kinetics, microstructure changes and moisture properties , 2014 .