Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars
暂无分享,去创建一个
Zhenguo Shi | Shu Wan | Caijun Shi | Ning Li | C. Shi | Ning Li | Zuhua Zhang | Zuhua Zhang | Zhenguo Shi | Ning Li | S. Wan
[1] Jay G. Sanjayan,et al. Resistance of alkali-activated slag concrete to carbonation , 2001 .
[2] D. Macphee,et al. Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .
[3] John L. Provis,et al. Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .
[4] D. Kulik. Improving the structural consistency of C-S-H solid solution thermodynamic models , 2011 .
[5] V. Rose,et al. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .
[6] Serdar Aydın,et al. Effect of activator type and content on properties of alkali-activated slag mortars , 2014 .
[7] Patrick Dangla,et al. Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics , 2007 .
[8] B. Lothenbach,et al. Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .
[9] Alexander Steffens,et al. Modeling carbonation for corrosion risk prediction of concrete structures , 2002 .
[10] C. Shi,et al. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation , 2017 .
[11] Josef Kaufmann,et al. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars , 2016 .
[12] A. Fernández-Jiménez,et al. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H , 2008 .
[13] John L. Provis,et al. Natural carbonation of aged alkali-activated slag concretes , 2014 .
[14] Fengting Li,et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. , 2008, Journal of hazardous materials.
[15] Jan Deja,et al. Carbonation aspects of alkali activated slag mortars and concretes , 2002 .
[16] Susan A. Bernal,et al. Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials , 2015 .
[17] Tarja Häkkinen,et al. THE INFLUENCE OF SLAG CONTENT ON THE MICROSTRUCTURE, PERMEABILITY AND MECHANICAL PROPERTIES OF CONCRETE. PART 1: MICROSTRUCTURAL STUDIES AND BASIC MECHANICAL PROPERTIES , 1993 .
[18] S. Ferreiro,et al. Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders , 2017 .
[19] K. Scrivener,et al. Hydration products of alkali activated slag cement , 1995 .
[20] Keun-Hyeok Yang,et al. Properties of cementless mortars activated by sodium silicate , 2008 .
[21] J. Provis,et al. Advances in understanding alkali-activated materials , 2015 .
[22] M. P. Méndez,et al. Study of the strength developed by stable carbonated phases in high alumina cement , 1984 .
[23] G. Saoût,et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .
[24] M. Chi. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete , 2012 .
[25] Luca Bertolini,et al. Corrosion of Steel in Concrete , 2013 .
[26] Mitsuo Sato,et al. Structure of vaterite and infrared spectra , 1969 .
[27] David W. Law,et al. Durability assessment of alkali activated slag (AAS) concrete , 2012 .
[28] Francisca Puertas,et al. Hormigón alternativo basado en escorias activadas alcalinamente , 2008 .
[29] B. Lothenbach,et al. Thermodynamic modelling of alkali-activated slag cements , 2015 .
[30] J. Deventer,et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .
[31] C. Shi,et al. Alkali-Activated Cements and Concretes , 2003 .
[32] Frank Winnefeld,et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .
[33] R. Cloots,et al. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement , 2006 .
[34] S. Al-Otaibi,et al. Durability of concrete incorporating GGBS activated by water-glass , 2008 .
[35] E. Rodríguez,et al. Hormigón alternativo basado en escorias activadas alcalinamente Alternative concrete based on alkali-activated slag , 2008 .
[36] Paul F. McMillan,et al. Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .
[37] P. L. Pratt,et al. Factors affecting the strength of alkali-activated slag , 1994 .
[38] S. Musić,et al. Precipitation of amorphous SiO2 particles and their properties , 2011 .
[39] C. Shi,et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies , 2017 .
[40] J. I. Escalante-García,et al. Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements , 2010 .
[41] Rupert J. Myers,et al. Phase diagrams for alkali-activated slag binders , 2017 .
[42] F. Puertas,et al. Carbonation process of alkali-activated slag mortars , 2006 .
[43] Michael N. Fardis,et al. Experimental investigation and mathematical modeling of the concrete carbonation problem , 1991 .
[44] J. I. Escalante-García,et al. Hydration Products and Reactivity of Blast‐Furnace Slag Activated by Various Alkalis , 2003 .
[45] J. Nicholas. Thermogravimetric Analysis , 1954, Nature.
[46] Patrick Dangla,et al. Investigation of the carbonation mechanism of \{CH\} and C-S-H in terms of kinetics, microstructure changes and moisture properties , 2014 .