Exact Ramsey numbers of odd cycles via nonlinear optimisation

For a graph $G$, the $k$-colour Ramsey number $R_k(G)$ is the least integer $N$ such that every $k$-colouring of the edges of the complete graph $K_N$ contains a monochromatic copy of $G$. Let $C_n$ denote the cycle on $n$ vertices. We show that for fixed $k\geq2$ and $n$ odd and sufficiently large, \[ R_k(C_n)=2^{k-1}(n-1)+1. \] This resolves a conjecture of Bondy and Erd\H{o}s [J. Combin. Th. Ser. B \textbf{14} (1973), 46--54] for large $n$. The proof is analytic in nature, the first step of which is to use the regularity method to relate this problem in Ramsey theory to one in nonlinear optimisation. This allows us to prove a stability-type generalisation of the above and establish a surprising correspondence between extremal $k$-colourings for this problem and perfect matchings in the $k$-dimensional hypercube $Q_k$.

[1]  Tomasz Luczak,et al.  The Ramsey number for a triple of long even cycles , 2007, J. Comb. Theory, Ser. B.

[2]  Endre Szemerédi,et al.  Three-Color Ramsey Numbers For Paths , 2007, Comb..

[3]  A. Nicholas Day,et al.  Multicolour Ramsey numbers of odd cycles , 2016, J. Comb. Theory, Ser. B.

[4]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[5]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[6]  Richard H. Schelp,et al.  All Ramsey numbers for cycles in graphs , 1974, Discret. Math..

[7]  P. Erdös,et al.  Ramsey Numbers for Cycles in Graphs , 1973 .

[8]  P. Erdös Some remarks on the theory of graphs , 1947 .

[9]  David G. Ferguson The Ramsey number of mixed-parity cycles III , 2015, 1508.07154.

[10]  Richard H. Schelp,et al.  Generalized Ramsey theory for multiple colors , 1976 .

[11]  Patric R. J. Östergård,et al.  Enumerating Perfect Matchings in n-Cubes , 2013, Order.

[12]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[13]  E. J. Cockayne,et al.  The Ramsey number for stripes , 1975 .

[14]  Frank Harary,et al.  The number of perfect matchings in a hypercube , 1988 .

[15]  Graham R. Brightwell,et al.  Ramsey-goodness—and otherwise , 2010, Comb..

[16]  Tomasz Luczak,et al.  The Ramsey Numbers for A Triple of Long Cycles , 2018, Comb..

[17]  Tomasz Luczak,et al.  Monochromatic Cycles in 2-Coloured Graphs , 2012, Combinatorics, Probability and Computing.

[18]  Tomasz Luczak,et al.  R(Cn, Cn, Cn)<=(4+o(1)) n , 1999, J. Comb. Theory, Ser. B.

[19]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[20]  Tomasz Łuczak,et al.  R(Cn,Cn,Cn)≤(4+o(1))n , 1999 .

[21]  J. Bondy,et al.  Pancyclic graphs II , 1971 .

[22]  Yoshiharu Kohayakawa,et al.  The 3-colored Ramsey number of odd cycles , 2005, Electron. Notes Discret. Math..

[23]  S. Radziszowski Small Ramsey Numbers , 2011 .

[24]  W. Rudin Principles of mathematical analysis , 1964 .

[25]  P. E. -. R. L. Graham,et al.  ON PARTITION THEOREMS FOR FINITE GRAPHS , 1973 .

[26]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[27]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[28]  Miklós Simonovits,et al.  On the multi‐colored Ramsey numbers of cycles , 2010, J. Graph Theory.

[29]  V. Rosta On a ramsey-type problem of J. A. Bondy and P. Erdös. I , 1973 .