Mechanism of geopolymerization and factors influencing its development: a review

Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under critical environmental conditions. Geopolymer involves the silicates and aluminates of by-products to undergo process of geopolymerization. It is environmentally friendly and need moderate energy to produce. This review presents the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization. Literature demonstrates that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymer. It is utilized to manufacture precast structures and non-structural elements, concrete pavements, concrete products and immobilization of toxic metal bearing waste that are resistant to heat and aggressive environment. Geopolymers gain 70% of the final strength in first 3–4 h of curing.

[1]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[2]  J. Serratosa,et al.  Silicon-29 and aluminum-27 NMR study of zeolite formation from alkali-leached kaolinites: influence of thermal preactivation , 1990 .

[3]  C. Yip,et al.  Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder , 2003 .

[4]  Ángel Palomo,et al.  Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead , 2003 .

[5]  Koen Janssens,et al.  Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash. , 2005, Environmental science & technology.

[6]  Brian H. O'Connor,et al.  Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite , 2003 .

[7]  L. Piga,et al.  Mechanical and leaching properties of cement solidified hospital solid-waste incinerator fly-ash , 1998 .

[8]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[9]  J. Dufour,et al.  Zeolite synthesis employing alkaline waste effluents from the aluminum industry , 2002 .

[10]  Paul Mccormick,et al.  Investigation of a synthetic aluminosilicate inorganic polymer , 2002 .

[11]  J.S.J. van Deventer,et al.  Factors affecting the immobilization of metals in geopolymerized flyash , 1998 .

[12]  J. Brooks Prediction of Setting Time of Fly Ash Concrete , 2002 .

[13]  J. Deventer,et al.  The geopolymerisation of alumino-silicate minerals , 2000 .

[14]  Antonia Moropoulou,et al.  ACCELERATED MICROSTRUCTURAL EVOLUTION OF A CALCIUM-SILICATE-HYDRATE (C-S-H) PHASE IN POZZOLANIC PASTES USING FINE SILICEOUS SOURCES: COMPARISON WITH HISTORIC POZZOLANIC MORTARS , 2004 .

[15]  Raffaele Cioffi,et al.  Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue , 2003 .

[16]  Jesse R. Conner,et al.  Chemical fixation and solidification of hazardous wastes , 1990 .

[17]  K. Gong,et al.  Novel modification method for inorganic geopolymer by using water soluble organic polymers , 2004 .

[18]  T. Mohammadi,et al.  Effect of calcination temperature of kaolin as a support for zeolite membranes , 2003 .

[19]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[20]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[21]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications☆ , 1997 .

[22]  S. Martínez-Ramírez,et al.  Microstructure studies on Portland cement pastes obtained in highly alkaline environments , 2001 .

[23]  L. Lange,et al.  The effect of accelerated carbonation on the properties of cement-solidified waste forms , 1996 .

[24]  G. Bennett Chemical fixation and solidification of hazardous wastes , 1992 .

[25]  Harry M. Freeman,et al.  Standard Handbook of Hazardous Waste Treatment and Disposal , 1997 .

[26]  J. Deventer,et al.  Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM , 2002 .

[27]  J. V. Deventer,et al.  Effects of Anions on the Formation of Aluminosilicate Gel in Geopolymers , 2002 .

[28]  D. Feng,et al.  Ultrasound enhanced geopolymerisation , 2004 .

[29]  S. Alonso,et al.  Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio , 2001 .

[30]  A. Fernández-Jiménez,et al.  "Geopolimeros": una nica base qumica y diferentes microestructuras , 2004 .

[31]  Vagelis G. Papadakis,et al.  Effect of fly ash on Portland cement systems , 1999 .

[32]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics , 1999 .

[33]  Salman Azhar,et al.  Performance of metakaolin concrete at elevated temperatures , 2003 .

[34]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[35]  J.S.J. van Deventer,et al.  THE EFFECT OF COMPOSITION AND TEMPERATURE ON THE PROPERTIES OF FLY ASH- AND KAOLINITE -BASED GEOPOLYMERS , 2002 .

[36]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[37]  Ángel Palomo,et al.  Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes Part I. Stabilisation of boron , 2003 .

[38]  J. Phair,et al.  Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers , 2000 .

[39]  S. Alonso,et al.  Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures , 2001 .

[40]  Leslie J. Struble,et al.  Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: Formation of zeolites and Al-substituted C-S-H , 2001 .

[41]  T. Bakharev,et al.  Geopolymeric materials prepared using Class F fly ash and elevated temperature curing , 2005 .

[42]  P. Hewlett,et al.  Lea's chemistry of cement and concrete , 2001 .

[43]  J. C. Swanepoel,et al.  Utilisation of fly ash in a geopolymeric material , 2002 .

[44]  J. Bai,et al.  Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth , 2002 .

[45]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[46]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[47]  J. Bai,et al.  Metakaolin and calcined clays as pozzolans for concrete: a review , 2001 .

[48]  Hubert A. Gasteiger,et al.  Solubility of aluminosilicates in alkaline solutions and a thermodynamic equilibrium model , 1992 .

[49]  J. Phair,et al.  Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers , 2001 .

[50]  F. Glasser,et al.  Zeolite P in cements: Its potential for immobilizing toxic and radioactive waste species , 1995 .

[51]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[52]  J.S.J. van Deventer,et al.  The characterisation of source materials in fly ash-based geopolymers , 2003 .

[53]  Luc Courard,et al.  Durability of mortars modified with metakaolin , 2003 .

[54]  V. Papadakis Effect of fly ash on Portland cement systems. Part II. High-calcium fly ash , 1999 .

[55]  A. Buchwald,et al.  Alkali-activated binders by use of industrial by-products , 2005 .

[56]  X. Querol,et al.  Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash , 1995 .

[57]  J. Phair,et al.  Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers” , 2003 .

[58]  A Polettini,et al.  Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. , 1999, Journal of hazardous materials.

[59]  Surendra P. Shah,et al.  Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders , 2004 .

[60]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses: Part III Influence of the composition of the silicate solution on production, structure and properties , 1997 .

[61]  R. D. Hooton,et al.  The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behaviour , 2003 .