A splitting approach for the magnetic Schrödinger equation
暂无分享,去创建一个
[1] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[2] Alexander Ostermann,et al. Convergence Analysis of Strang Splitting for Vlasov-Type Equations , 2012, SIAM J. Numer. Anal..
[3] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[4] Alexander Ostermann,et al. A splitting approach for the Kadomtsev-Petviashvili equation , 2014, Journal of Computational Physics.
[5] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[6] Zhennan Zhou,et al. A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials , 2013, Commun. Inf. Syst..
[7] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[8] Alexander Ostermann,et al. Exponential splitting for unbounded operators , 2009, Math. Comput..
[9] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[10] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[11] Erwan Faou,et al. Geometric Numerical Integration and Schrodinger Equations , 2012 .
[12] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[13] Christof Sparber,et al. Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.
[14] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[15] Stefan Kunis,et al. Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.