On the fractional Laplacian of variable order

We present a novel definition of variable-order fractional Laplacian on Rn based on a natural generalization of the standard Riesz potential. Our definition holds for values of the fractional parameter spanning the entire open set (0, n/2). We then discuss some properties of the fractional Poisson’s equation involving this operator and we compute the corresponding Green’s function, for which we provide some instructive examples for specific problems. MSC 2010 : Primary: 35R11, 26A33; Secondary: 42A38

[1]  Bertrand G. Giraud,et al.  On the positivity of Fourier transforms , 2014 .

[2]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[3]  Christian Glusa,et al.  A fractional model for anomalous diffusion with increased variability: Analysis, algorithms and applications to interface problems , 2021, Numerical Methods for Partial Differential Equations.

[4]  A. Giusti,et al.  On the Kuzmin model in fractional Newtonian gravity , 2020, The European Physical Journal Plus.

[5]  K. Diethelm,et al.  Why fractional derivatives with nonsingular kernels should not be used , 2020, Fractional Calculus and Applied Analysis.

[6]  P. R. Stinga,et al.  User’s guide to the fractional Laplacian and the method of semigroups , 2018, Fractional Differential Equations.

[7]  Marta D'Elia,et al.  A Unified Theory of Fractional Nonlocal and Weighted Nonlocal Vector Calculus. , 2020 .

[8]  R. Schilling,et al.  Lower bounded semi-Dirichlet forms associated with Lévy type operators , 2011, 1108.3499.

[9]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[10]  Harbir Antil,et al.  Sobolev Spaces with Non-Muckenhoupt Weights, Fractional Elliptic Operators, and Applications , 2018, SIAM J. Math. Anal..

[11]  Hongguang Sun,et al.  A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications , 2019, Fractional Calculus and Applied Analysis.

[12]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[13]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[14]  Guofei Pang,et al.  What is the fractional Laplacian? A comparative review with new results , 2020, J. Comput. Phys..

[15]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[16]  GAMMA , 2020, Proceedings of the 39th International Conference on Computer-Aided Design.

[17]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[18]  Moritz Kassmann,et al.  The Dirichlet problem for nonlocal operators , 2013, 1309.5028.

[19]  M. Kwasnicki Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.