Surface-polaritonic phase singularities and multimode polaritonic frequency combs via dark rogue-wave excitation in hybrid plasmonic waveguide

Material characteristics and input-field specifics limit controllability of nonlinear electromagnetic-field interactions. As these nonlinear interactions could be exploited to create strongly localized bright and dark waves, such as nonlinear surface polaritons, ameliorating this limitation is important. We present our approach to amelioration, which is based on a surface-polaritonic waveguide reconfiguration that enables excitation, propagation and coherent control of coupled dark rogue waves having orthogonal polarizations. Our control mechanism is achieved by finely tuning laser-field intensities and their respective detuning at the interface between the atomic medium and the metamaterial layer. In particular, we utilize controllable electromagnetically induced transparency windows commensurate with surface-polaritonic polarization-modulation instability to create symmetric and asymmetric polaritonic frequency combs associated with dark localized waves. Our method takes advantage of an atomic self-defocusing nonlinearity and dark rogue-wave propagation to obtain a sufficient condition for generating phase singularities. Underpinning this method is our theory which incorporates dissipation and dispersion due to the atomic medium being coupled to nonlinear surface-polaritonic waves. Consequently, our waveguide configuration acts as a bimodal polaritonic frequency-comb generator and high-speed phase rotator, thereby opening prospects for phase singularities in nanophotonic and quantum communication devices.

[1]  David J. Moss,et al.  Integrated micro-comb sources for quantum optical applications. , 2020, 2001.02356.

[2]  Arnaud Mussot,et al.  Rogue waves and analogies in optics and oceanography , 2019, Nature Reviews Physics.

[3]  M. Orenstein,et al.  Mixing the Light Spin with Plasmon Orbit by Nonlinear Light-Matter Interaction in Gold , 2019, Physical Review X.

[4]  Yong Yang,et al.  Plasmon-enhanced light–matter interactions and applications , 2019, npj Computational Materials.

[5]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[6]  Christian Reimer,et al.  Quantum optical microcombs , 2019, Nature Photonics.

[7]  V. Zakharov,et al.  Breather Wave Molecules. , 2019, Physical review letters.

[8]  Theodor W. Hänsch,et al.  Frequency comb spectroscopy , 2019, Nature Photonics.

[9]  B. Sanders,et al.  Polaritonic frequency-comb generation and breather propagation in a negative-index metamaterial with a cold four-level atomic medium , 2019, Physical Review A.

[10]  A. M. Merzlikin,et al.  Silver-based plasmonics: golden material platform and application challenges [Invited] , 2019, Optical Materials Express.

[11]  B. Sanders,et al.  Excitation and propagation of surface polaritonic rogue waves and breathers , 2018, Physical Review A.

[12]  A. Belyanin,et al.  Difference frequency generation of surface plasmon-polaritons in Landau quantized graphene , 2018, Physical Review B.

[13]  J. Ou,et al.  Optical properties of single crystal silver thin films on mica for high performance plasmonic devices , 2018, Optical Materials Express.

[14]  Bo Tian,et al.  Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber , 2018 .

[15]  Jean-Marc Merolla,et al.  Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser , 2018, Nature Photonics.

[16]  G. Millot,et al.  Observation of a Group of Dark Rogue Waves in a Telecommunication Optical Fiber , 2018, 1802.09865.

[17]  G. Mahan,et al.  Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities , 2017, 1802.01469.

[18]  M. Raschke,et al.  Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients. , 2017, Physical review letters.

[19]  Nick Lazarides,et al.  Superconducting metamaterials , 2017, Physics Reports.

[20]  R. Sadighi-Bonabi,et al.  Coupler-free surface polariton excitation and propagation with cold four-level atomic medium , 2017 .

[21]  B. Sanders,et al.  Strong Coherent Light Amplification with Double Electromagnetically Induced Transparency Coherences , 2017, Scientific Reports.

[22]  T. Ebbesen,et al.  High-Efficiency Second-Harmonic Generation from Hybrid Light-Matter States. , 2016, Nano letters.

[23]  B. Sanders,et al.  Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency , 2016 .

[24]  B. R. Lavoie,et al.  Characterization of surface-plasmon polaritons at lossy interfaces , 2016, 1611.00695.

[25]  Steven A. Miller,et al.  Breather soliton dynamics in microresonators , 2016, Nature Communications.

[26]  Guangyuan Li,et al.  Figure of merit for Kerr nonlinear plasmonic waveguides , 2016 .

[27]  Cristina Masoller,et al.  Roadmap on optical rogue waves and extreme events , 2016 .

[28]  Young-Jin Kim,et al.  Frequency comb transferred by surface plasmon resonance , 2016, Nature Communications.

[29]  G. Millot,et al.  Optical Dark Rogue Wave , 2016, Scientific Reports.

[30]  Fabio Baronio,et al.  Polarization modulation instability in a Manakov fiber system , 2015 .

[31]  V. Zakharov,et al.  Superregular breathers in optics and hydrodynamics: Omnipresent modulation instability beyond simple periodicity , 2015 .

[32]  C. Poulton,et al.  Efficient end-fire coupling of surface plasmons in a metal waveguide , 2015 .

[33]  Guoxiang Huang,et al.  Surface polaritons in a negative-index metamaterial with active Raman gain , 2015 .

[34]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[35]  Guy Millot,et al.  Nonlinear polarization effects in optical fibers: polarization attraction and modulation instability [Invited] , 2014 .

[36]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[37]  Franco Nori,et al.  What is and what is not electromagnetically induced transparency in whispering-gallery microcavities , 2014, Nature Communications.

[38]  Fabio Baronio,et al.  Vector rogue waves and baseband modulation instability in the defocusing regime. , 2014, Physical review letters.

[39]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[40]  Boling Guo,et al.  High-order rogue waves in vector nonlinear Schrödinger equations. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  B. Sanders,et al.  Double-double electromagnetically induced transparency with amplification , 2013, 1310.3318.

[42]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[43]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[44]  Truong X. Tran,et al.  Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals , 2013 .

[45]  Y. Kivshar,et al.  Self-focusing of femtosecond surface plasmon polaritons. , 2013, Optics express.

[46]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[47]  I. Al-Naib,et al.  Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. , 2012, Optics letters.

[48]  Barry C. Sanders,et al.  Entanglement creation with negative index metamaterials , 2012, 1205.4506.

[49]  J. Ou,et al.  Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film. , 2012, Optics express.

[50]  C. Finot,et al.  Higher-order modulation instability in nonlinear fiber optics. , 2011, Physical review letters.

[51]  Haibin Wu,et al.  Modified self-Kerr-nonlinearity in a four-level N-type atomic system , 2011 .

[52]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[53]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[54]  J. Dowling,et al.  Objectively discerning Autler-Townes splitting from electromagnetically induced transparency. , 2011, Physical review letters.

[55]  Y. Kivshar,et al.  Nonlinear nanofocusing in tapered plasmonic waveguides. , 2010, Physical review letters.

[56]  B. Sanders,et al.  QUANTUM INFORMATICS WITH PLASMONIC META-MATERIALS , 2010, 1008.1303.

[57]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[58]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[59]  B. Sanders,et al.  Low-loss nonlinear polaritonics , 2009, 0911.1372.

[60]  A. Degasperis,et al.  Multicomponent integrable wave equations: II. Soliton solutions , 2009, 0907.1822.

[61]  U. Chettiar,et al.  Yellow-light negative-index metamaterials. , 2009, Optics letters.

[62]  L. Ostrovsky,et al.  Modulation instability: The beginning , 2009 .

[63]  Jinhui Wu,et al.  All-optical routing by light storage in a Pr3+:Y2SiO5 crystal , 2008 .

[64]  Barry C Sanders,et al.  Coherent control of low loss surface polaritons. , 2008, Physical review letters.

[65]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[66]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[67]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[68]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006, hep-ph/0602123.

[69]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[70]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[71]  M. Nilsson,et al.  Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening , 2005, quant-ph/0502184.

[72]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[73]  M. Scully,et al.  Atomic interference phenomena in solids with a long-lived spin coherence , 2002 .

[74]  M. Kim,et al.  Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime , 2002, quant-ph/0207160.

[75]  Hemmer,et al.  Coherence switching in a four-level system: quantum switching , 2000, Physical review letters.

[76]  Adrian Ankiewicz,et al.  PARTIALLY COHERENT SOLITONS ON A FINITE BACKGROUND , 1999 .

[77]  M. Shahriar,et al.  Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal. , 1997, Optics letters.

[78]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[79]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[80]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[81]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[82]  R. Beyer,et al.  Soviet Physics—JETP , 1960 .

[83]  V. Shalaev Optical negative-index metamaterials , 2007 .