Binary Subspace Codes in Small Ambient Spaces

Codes in finite projective spaces equipped with the subspace distance have been proposed for error control in random linear network coding. Here we collect the present knowledge on lower and upper bounds for binary subspace codes for projective dimensions of at most $7$. We obtain several improvements of the bounds and perform two classifications of optimal subspace codes, which are unknown so far in the literature.

[1]  Sascha Kurz,et al.  Partial spreads and vector space partitions , 2016, 1611.06328.

[2]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[3]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[4]  Michael Braun,et al.  q‐Analogs of Packing Designs , 2012, 1212.4614.

[5]  Sascha Kurz,et al.  Optimal Binary Subspace Codes of Length 6 , Constant Dimension 3 and Minimum Subspace Distance 4 , 2014 .

[6]  Alfred Wassermann,et al.  A subspace code of size 333 in the setting of a binary q-analog of the Fano plane , 2017, Adv. Math. Commun..

[7]  Ning Cai,et al.  Network Error Correction, II: Lower Bounds , 2006, Commun. Inf. Syst..

[8]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[9]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[10]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[11]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[12]  Marshall Hall,et al.  Uniqueness of the projective plane of order eight , 1956 .

[13]  Alfred Wassermann,et al.  The order of the automorphism group of a binary $${\varvec{q}}$$q-analog of the Fano plane is at most two , 2018, Des. Codes Cryptogr..

[14]  Alfred Wassermann,et al.  Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6 , 2019, Des. Codes Cryptogr..

[15]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[16]  Sascha Kurz,et al.  An improvement of the Johnson bound for subspace codes , 2017, ArXiv.

[17]  Tuvi Etzion,et al.  Galois geometries and coding theory , 2016, Des. Codes Cryptogr..

[18]  D. J. Kleitman On an extremal property of antichains in partial orders , 1974 .

[19]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[20]  Thomas Honold,et al.  On putative q-analogues of the Fano plane and related combinatorial structures , 2015, 1504.06688.

[21]  Sascha Kurz,et al.  Constructions and bounds for mixed-dimension subspace codes , 2015, Adv. Math. Commun..

[22]  Christine Bachoc,et al.  Bounds for projective codes from semidefinite programming , 2012, Adv. Math. Commun..

[23]  R. Ahlswede,et al.  On error control codes for random network coding , 2009, 2009 Workshop on Network Coding, Theory, and Applications.

[24]  Thomas Feulner The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes , 2009, Adv. Math. Commun..