Bounds on the number of iterations for turbo-like ensembles over the binary erasure channel
暂无分享,去创建一个
[1] Amin Shokrollahi,et al. Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.
[2] Michael Luby,et al. LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[3] Stephan ten Brink,et al. Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..
[4] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[5] H. Jin,et al. Irregular repeat accumulate codes , 2000 .
[6] Robert J. McEliece,et al. On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[7] En-Hui Yang,et al. Low-density parity-check codes with fast decoding convergence speed , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[8] Dariush Divsalar,et al. Accumulate-Repeat-Accumulate Codes , 2007, IEEE Trans. Commun..
[9] Igal Sason,et al. On Universal Properties of Capacity-Approaching LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.
[10] Stephan ten Brink,et al. Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.
[11] Wei Yu,et al. Complexity-optimized low-density parity-check codes for gallager decoding algorithm B , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[12] Meir Feder,et al. Bounds on achievable rates of LDPC codes used over the binary erasure channel , 2004, IEEE Transactions on Information Theory.
[13] Simon Litsyn,et al. Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.
[14] C. Méasson. Conservation laws for coding , 2006 .
[15] Fabrizio Pollara,et al. Turbo-Decoder Implementation for the Deep Space Network , 2001 .
[16] Rüdiger L. Urbanke,et al. Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[17] Stephan ten Brink,et al. Code characteristic matching for iterative decoding of serially concatenated codes , 2001, Ann. des Télécommunications.
[18] Robert J. McEliece. Are Turbo-like Codes Effective on Nonstandard Channels?* , 2001 .
[19] Shu Lin,et al. Two simple stopping criteria for turbo decoding , 1999, IEEE Trans. Commun..
[20] Amin Shokrollahi,et al. Raptor codes , 2011, IEEE Transactions on Information Theory.
[21] Dariush Divsalar,et al. Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.
[22] Rüdiger L. Urbanke,et al. Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.
[23] Aamod Dinkar Khandekar,et al. Graph-based codes and iterative decoding , 2003 .
[24] Emre Telatar,et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.
[25] M. Shokrollahi,et al. Capacity-achieving sequences , 2001 .
[26] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[27] Igal Sason. On Universal Properties of Capacity-Approaching LDPC Ensembles , 2007, ArXiv.
[28] Igal Sason,et al. Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.
[29] Rüdiger L. Urbanke,et al. Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.
[30] Andrea Montanari,et al. How to find good finite-length codes: from art towards science , 2006, Eur. Trans. Telecommun..
[31] Achilleas Anastasopoulos,et al. Capacity-Achieving Codes With Bounded Graphical Complexity and Maximum Likelihood Decoding , 2010, IEEE Transactions on Information Theory.
[32] Andrea Montanari,et al. The Generalized Area Theorem and Some of its Consequences , 2005, IEEE Transactions on Information Theory.