Bounds on the number of iterations for turbo-like ensembles over the binary erasure channel

This paper provides simple lower bounds on the number of iterations which is required for successful message-passing decoding of some important families of graph-based code ensembles (including low-density parity-check (LDPC) codes and variations of repeat-accumulate codes). The transmission of the code ensembles is assumed to take place over a binary erasure channel, and the bounds refer to the asymptotic case where we let the block length tend to infinity. The simplicity of the bounds derived in this paper stems from the fact that they are easily evaluated and are expressed in terms of some basic parameters of the ensemble which include the fraction of degree-2 variable nodes, the target bit erasure probability, and the gap between the channel capacity and the design rate of the ensemble. This paper demonstrates that the number of iterations which is required for successful message-passing decoding scales at least like the inverse of the gap (in rate) to capacity, provided that the fraction of degree-2 variable nodes of these turbo-like ensembles does not vanish (hence, the number of iterations becomes unbounded as the gap to capacity vanishes).

[1]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[2]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[3]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[4]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[5]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[6]  Robert J. McEliece,et al.  On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[7]  En-Hui Yang,et al.  Low-density parity-check codes with fast decoding convergence speed , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[8]  Dariush Divsalar,et al.  Accumulate-Repeat-Accumulate Codes , 2007, IEEE Trans. Commun..

[9]  Igal Sason,et al.  On Universal Properties of Capacity-Approaching LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[10]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[11]  Wei Yu,et al.  Complexity-optimized low-density parity-check codes for gallager decoding algorithm B , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  Meir Feder,et al.  Bounds on achievable rates of LDPC codes used over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[13]  Simon Litsyn,et al.  Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.

[14]  C. Méasson Conservation laws for coding , 2006 .

[15]  Fabrizio Pollara,et al.  Turbo-Decoder Implementation for the Deep Space Network , 2001 .

[16]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Stephan ten Brink,et al.  Code characteristic matching for iterative decoding of serially concatenated codes , 2001, Ann. des Télécommunications.

[18]  Robert J. McEliece Are Turbo-like Codes Effective on Nonstandard Channels?* , 2001 .

[19]  Shu Lin,et al.  Two simple stopping criteria for turbo decoding , 1999, IEEE Trans. Commun..

[20]  Amin Shokrollahi,et al.  Raptor codes , 2011, IEEE Transactions on Information Theory.

[21]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[22]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[23]  Aamod Dinkar Khandekar,et al.  Graph-based codes and iterative decoding , 2003 .

[24]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[25]  M. Shokrollahi,et al.  Capacity-achieving sequences , 2001 .

[26]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[27]  Igal Sason On Universal Properties of Capacity-Approaching LDPC Ensembles , 2007, ArXiv.

[28]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[29]  Rüdiger L. Urbanke,et al.  Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[30]  Andrea Montanari,et al.  How to find good finite-length codes: from art towards science , 2006, Eur. Trans. Telecommun..

[31]  Achilleas Anastasopoulos,et al.  Capacity-Achieving Codes With Bounded Graphical Complexity and Maximum Likelihood Decoding , 2010, IEEE Transactions on Information Theory.

[32]  Andrea Montanari,et al.  The Generalized Area Theorem and Some of its Consequences , 2005, IEEE Transactions on Information Theory.