High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries.

Olivine NaFePO4/C microsphere cathode is prepared by a facile aqueous electrochemical displacement method from LiFePO4/C precursor. The NaFePO4/C cathode shows a high discharge capacity of 111 mAh g(-1), excellent cycling stability with 90% capacity retention over 240 cycles at 0.1 C, and high rate capacity (46 mAh g(-1) at 2 C). The excellent electrochemical performance demonstrates that the aqueous electrochemical displacement method is an effective and promising way to prepare NaFePO4/C material for Na-based energy storage applications. Moreover, the Na2/3FePO4 intermediate is observed for the first time during the Na intercalation process through conventional electrochemical techniques, corroborating an identical two-step phase transition reaction both upon Na intercalation and deintercalation processes. The clarification of the electrochemical reaction mechanism of olivine NaFePO4 could inspire more attention on the investigation of this material for Na ion batteries.

[1]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[2]  Jean-Marie Tarascon,et al.  One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders , 2004 .

[3]  Robert Dominko,et al.  Impact of LiFePO4 ∕ C Composites Porosity on Their Electrochemical Performance , 2005 .

[4]  Min Zhou,et al.  Nanosized Na4Fe(CN)6/C Composite as a Low‐Cost and High‐Rate Cathode Material for Sodium‐Ion Batteries , 2012 .

[5]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[6]  Jiangfeng Qian,et al.  Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. , 2014, Nano letters.

[7]  Dominique R. T. Appadoo,et al.  Maricite (NaMn1/3Ni1/3Co1/3PO 4)/activated carbon: Hybrid capacitor , 2013 .

[8]  P. Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4. , 2010 .

[9]  Feng Wu,et al.  Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries , 2015 .

[10]  Zhenguo Yang,et al.  Advanced Intermediate-Temperature Na-S Battery , 2013 .

[11]  Teófilo Rojo,et al.  Na–Vacancy and Charge Ordering in Na≈2/3FePO4 , 2014 .

[12]  Min Zhou,et al.  Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries , 2010 .

[13]  Jun Liu,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. , 2011 .

[14]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[15]  Junmei Zhao,et al.  Monodisperse iron phosphate nanospheres: preparation and application in energy storage. , 2012, ChemSusChem.

[16]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[17]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[18]  J. Tarascon,et al.  Development of potentiometric ion sensors based on insertion materials as sensitive element , 2003 .

[19]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[20]  Xiulei Ji,et al.  An Organic Pigment as a High‐Performance Cathode for Sodium‐Ion Batteries , 2014 .

[21]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[22]  A. Yamada,et al.  Phase Diagram of Olivine NaxFePO4 (0 < x < 1) , 2013 .

[23]  S. Mentus,et al.  Fast sodiation/desodiation reactions of electrochemically delithiated olivine LiFePO 4 in aerated aqueous NaNO 3 solution , 2014 .

[24]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[25]  M. Minakshi,et al.  Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage , 2013 .

[26]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[27]  G. Suresh,et al.  Kinetics of electrochemical insertion of lithium ion into LiFePO4 from aqueous 2 M Li2SO4 solution studied by potentiostatic intermittent titration technique , 2011 .

[28]  Hui Li,et al.  Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries , 2015 .

[29]  P. Moreau,et al.  Elucidation of the Na(2/3)FePO₄ and Li(2/3)FePO₄ intermediate superstructure revealing a pseudouniform ordering in 2D. , 2014, Journal of the American Chemical Society.

[30]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[31]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[32]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[33]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[34]  H. Fern�ndez-Mor�n,et al.  Electron Microscopy and Diffraction of Layered, Superconducting Intercalation Complexes , 1971, Science.

[35]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[36]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[37]  Jiwen Feng,et al.  A Honeycomb‐Layered Na3Ni2SbO6: A High‐Rate and Cycle‐Stable Cathode for Sodium‐Ion Batteries , 2014, Advanced materials.

[38]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[39]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[40]  Kepeng Song,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[41]  H. Lipson Crystal Structures , 1949, Nature.

[42]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[43]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[44]  N. Cvjetićanin,et al.  Gel-combustion synthesis of LiFePO4/C composite with improved capacity retention in aerated aqueous electrolyte solution , 2013 .

[45]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[46]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[47]  A. Manivannan,et al.  Structural Studies on NaFePO4 as a Cathode Material for Na+/Li+ Mixed-Ion Batteries , 2011, ECS Transactions.

[48]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[49]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[50]  V. Roddatis,et al.  The mechanism of NaFePO₄ (de)sodiation determined by in situ X-ray diffraction. , 2014, Physical chemistry chemical physics : PCCP.

[51]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[52]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[53]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[54]  Jeng‐Kuei Chang,et al.  Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes , 2014 .