Asymmetric learning based deep denoiser for nonstationary desert seismic noise suppression

[1]  G. Beroza,et al.  Deep-learning seismology , 2022, Science.

[2]  Sanyi Yuan,et al.  DCNNs-Based Denoising With a Novel Data Generation for Multidimensional Geological Structures Learning , 2021, IEEE Geoscience and Remote Sensing Letters.

[3]  Min Bai,et al.  Self-Attention Deep Image Prior Network for Unsupervised 3-D Seismic Data Enhancement , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Yangkang Chen,et al.  Unsupervised 3-D Random Noise Attenuation Using Deep Skip Autoencoder , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[5]  G. McMechan,et al.  Elastic isotropic and anisotropic full wave-form inversions using automatic differentiation for gradient calculations in a framework of recurrent neural networks , 2021 .

[6]  Jinsheng Jiang,et al.  A Convolutional Autoencoder Method for Simultaneous Seismic Data Reconstruction and Denoising , 2021, IEEE Geoscience and Remote Sensing Letters.

[7]  Hongbo Lin,et al.  A Branch Construction-Based CNN Denoiser for Desert Seismic Data , 2021, IEEE Geoscience and Remote Sensing Letters.

[8]  Fu Huang,et al.  Intensive interferences processing for GPR signal based on the wavelet transform and F-K filtering , 2021 .

[9]  Yangkang Chen,et al.  A fully unsupervised and highly generalized deep learning approach for random noise suppression , 2021, Geophysical Prospecting.

[10]  Naihao Liu,et al.  Deep Learning Prior Model for Unsupervised Seismic Data Random Noise Attenuation , 2021, IEEE Geoscience and Remote Sensing Letters.

[11]  Qiankun Feng,et al.  DnResNeXt Network for Desert Seismic Data Denoising , 2020, IEEE Geoscience and Remote Sensing Letters.

[12]  H. Fu,et al.  Training a Seismogram Discriminator Based on ResNet , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Nicola Casagli,et al.  Microseismic Signal Denoising and Separation Based on Fully Convolutional Encoder–Decoder Network , 2020 .

[14]  Yongxin Chou,et al.  Seismic Random Noise Reduction Using Adaptive Threshold Combined Scale and Directional Characteristics of Shearlet Transform , 2020, IEEE Geoscience and Remote Sensing Letters.

[15]  Wei Liu,et al.  Seismic Signal Denoising Using $f-x$ Variational Mode Decomposition , 2020, IEEE Geoscience and Remote Sensing Letters.

[16]  Yangkang Chen,et al.  Deep denoising autoencoder for seismic random noise attenuation , 2020 .

[17]  Baojun Yang,et al.  Modeling Land Seismic Exploration Random Noise in a Weakly Heterogeneous Medium and the Application to the Training Set , 2020, IEEE Geoscience and Remote Sensing Letters.

[18]  Hongzhou Wang,et al.  Deep Residual Encoder–Decoder Networks for Desert Seismic Noise Suppression , 2020, IEEE Geoscience and Remote Sensing Letters.

[19]  Wei Wang,et al.  Poststack Seismic Data Denoising Based on 3-D Convolutional Neural Network , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Hélio Lopes,et al.  Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data , 2020, Comput. Geosci..

[21]  Hongbo Lin,et al.  Patch classification based EPLL with mixed GMM for nonstationary seismic random noise attenuation , 2020 .

[22]  Baojun Yang,et al.  Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Chao Zhang,et al.  Strong random noise attenuation by shearlet transform and time-frequency peak filtering , 2019, GEOPHYSICS.

[24]  Yushu Zhang,et al.  A Patch Based Denoising Method Using Deep Convolutional Neural Network for Seismic Image , 2019, IEEE Access.

[25]  Yangkang Chen,et al.  Seismic Noise Attenuation Using Unsupervised Sparse Feature Learning , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Feng Wang,et al.  Residual Learning of Deep Convolutional Neural Network for Seismic Random Noise Attenuation , 2019, IEEE Geoscience and Remote Sensing Letters.

[27]  Yue Li,et al.  Low-Frequency Noise Suppression Method Based on Improved DnCNN in Desert Seismic Data , 2019, IEEE Geoscience and Remote Sensing Letters.

[28]  Hao Zhang,et al.  Can learning from natural image denoising be used for seismic data interpolation? , 2019, GEOPHYSICS.

[29]  Tapan Mukerji,et al.  Convolutional neural network for seismic impedance inversion , 2018, GEOPHYSICS.

[30]  Wangmeng Zuo,et al.  Toward Convolutional Blind Denoising of Real Photographs , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Feng Zhang,et al.  Simultaneous multi-component seismic denoising and reconstruction via K-SVD , 2018 .

[32]  Jonathan T. Barron,et al.  Burst Denoising with Kernel Prediction Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Lei Zhang,et al.  FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising , 2017, IEEE Transactions on Image Processing.

[34]  Qing Huo Liu,et al.  Wavelet-Based Higher Order Correlative Stacking for Seismic Data Denoising in the Curvelet Domain , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  S. Mostafa Mousavi,et al.  Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data , 2017 .

[36]  Yue Li,et al.  Seismic Exploration Random Noise on Land: Modeling and Application to Noise Suppression , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[38]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[39]  S. Mostafa Mousavi,et al.  Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform , 2016 .

[40]  Hongbo Lin,et al.  Simultaneous seismic random noise attenuation and signal preservation by optimal spatiotemporal TFPF , 2016 .

[41]  Yu-Bin Yang,et al.  Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections , 2016, NIPS.

[42]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  James H. McClellan,et al.  Seismic data denoising through multiscale and sparsity-promoting dictionary learning , 2015 .

[44]  Ning Wu,et al.  A study on the stationarity and Gaussianity of the background noise in land-seismic prospecting , 2015 .

[45]  Chao Zhang,et al.  Curvelet domain denoising based on kurtosis characteristics , 2015 .

[46]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[47]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[48]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[49]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[50]  Yangkang Chen,et al.  Random noise attenuation by f-x empirical mode decomposition predictive filtering , 2014 .

[51]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[52]  Hongbo Lin,et al.  Mask-Guided Model for Seismic Data Denoising , 2022, IEEE Geoscience and Remote Sensing Letters.

[53]  Xiaokai Wang,et al.  Attenuation of the Multiple Reflection-Refraction in 2-D Common-Shot Gather via Random-Derangement-Based FX Cadzow Filter , 2022, IEEE Geoscience and Remote Sensing Letters.

[54]  Mokhtar Mohammadi,et al.  Random noise attenuation in seismic data using Hankel sparse low-rank approximation , 2021, Comput. Geosci..

[55]  Yue Li,et al.  Noise suppression method based on multi-scale Dilated Convolution Network in desert seismic data , 2021, Comput. Geosci..

[56]  Wen-Long Hou,et al.  Random Noise Reduction in Seismic Data by Using Bidimensional Empirical Mode Decomposition and Shearlet Transform , 2019, IEEE Access.