Simultaneous state and parameter estimation: the role of sensitivity analysis

State and parameter estimation is essential for process monitoring and control. Observability plays an important role in both state and parameter estimation. In simultaneous state and parameter estimation, the parameters are often augmented as extra states of the original system. When the augmented system is observable, various existing state estimation approaches may be used to estimate the states and parameters simultaneously. However, when the augmented system is not observable, how we should proceed to maximally extract the information contained in the measured outputs is not clear. This paper concerns about simultaneous state and parameter estimation when the augmented system is not fully observable. Specifically, we first show how sensitivity analysis is related to observability of a dynamical system, and then illustrate how it may be used to select variables for simultaneous estimation. We also propose a moving horizon state estimation (MHE) design that can use the variable selection results in a natural way. Extensive simulations are carried out to show the efficiency of the proposed approach.

[1]  Xunyuan Yin,et al.  State estimation of wastewater treatment plants based on model approximation , 2018, Comput. Chem. Eng..

[2]  Amos Ben-Zvi,et al.  Identifiability and estimability study for a dynamic solid oxide fuel cell model , 2009, Comput. Chem. Eng..

[3]  Karel J. Keesman,et al.  Controllability and observability of 2D thermal flow in bulk storage facilities using sensitivity fields , 2018, Int. J. Control.

[4]  R. Kamalapurkar,et al.  Simultaneous state and parameter estimation for second-order nonlinear systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[5]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[6]  Wolfgang Marquardt,et al.  State estimation for large-scale wastewater treatment plants. , 2013, Water research.

[8]  Bjarne A. Foss,et al.  Parameter ranking by orthogonalization - Applied to nonlinear mechanistic models , 2008, Autom..

[9]  Gabriele Pannocchia,et al.  Disturbance models for offset‐free model‐predictive control , 2003 .

[10]  Juergen Hahn,et al.  Generalization of a parameter set selection procedure based on orthogonal projections and the D-optimality criterion , 2012 .

[11]  Alejandro Fernández Villaverde,et al.  Observability and Structural Identifiability of Nonlinear Biological Systems , 2018, Complex..

[12]  Chan-Nan Lu,et al.  A Review on Distribution System State Estimation , 2017, IEEE Transactions on Power Systems.

[13]  Jinfeng Liu,et al.  Lyapunov-based MPC with robust moving horizon estimation and its triggered implementation , 2013 .

[14]  Brahim Benyahia,et al.  A framework for model reliability and estimability analysis of crystallization processes with multi-impurity multi-dimensional population balance models , 2019, Comput. Chem. Eng..

[15]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: Simultaneous state and parameter estimation , 2006 .

[16]  J. D. Stigter,et al.  An efficient procedure to assist in the re-parametrization of structurally unidentifiable models. , 2020, Mathematical biosciences.

[17]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[18]  D Joubert,et al.  Observability of Complex Systems: Finding the Gap , 2017, Scientific Reports.

[19]  David W. Bacon,et al.  Modeling Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and Experimental Design , 2003 .

[21]  Jinfeng Liu,et al.  A Decentralized Framework for Parameter and State Estimation of Infiltration Processes , 2020 .

[22]  H. Künsch,et al.  Practical identifiability analysis of large environmental simulation models , 2001 .

[23]  Jinfeng Liu,et al.  Distributed Extended Kalman Filtering for Wastewater Treatment Processes , 2016 .

[24]  P. Olver Nonlinear Systems , 2013 .

[25]  Sirish L. Shah,et al.  Parameter and state estimation of an agro-hydrological system based on system observability analysis , 2019, Comput. Chem. Eng..

[26]  Salim Ibrir Joint state and parameter estimation of non-linearly parameterized discrete-time nonlinear systems , 2018, Autom..

[27]  L. Biegler,et al.  Fast Offset-Free Nonlinear Model Predictive Control Based on Moving Horizon Estimation , 2010 .

[28]  An Integrated Frequent RTO and Adaptive Nonlinear MPC Scheme Based on Simultaneous Bayesian State and Parameter Estimation , 2019, Industrial & Engineering Chemistry Research.

[29]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[30]  Yuguo Chen,et al.  State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter , 2009 .

[31]  Costas Kravaris,et al.  Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..

[32]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[33]  Christopher K. Wikle,et al.  A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation , 2016, 1611.03835.

[34]  Lorenz T. Biegler,et al.  Development of robust extended Kalman filter and moving window estimator for simultaneous state and parameter/disturbance estimation , 2018 .

[35]  Bernard Friedland,et al.  A method for simultaneous state and parameter estimation in nonlinear systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[36]  Feng Ding,et al.  Parameter estimation for control systems based on impulse responses , 2017 .

[37]  Chao Li,et al.  Estimation of Unsaturated Soil Hydraulic Parameters Using the Ensemble Kalman Filter , 2011 .

[38]  Sirish L. Shah,et al.  Parameter and State Estimation of One-Dimensional Infiltration Processes: A Simultaneous Approach , 2020 .