Triggering Two-Step Spin Bistability and Large Hysteresis in Spin Crossover Nanoparticles via Molecular Nanoengineering

The local entrapment of the spin crossover complex Fe(II)-tris[2-(2′-pyridyl)benzimidazole] into the pluronic polymeric matrix (P123, PEG20–PPG70–PEG20, MW ∼ 5800) yielded the formation of magnetic nanoparticles of ∼26 nm (SCO-Np). Formation of SCO-Np was driven by the emergence of noncovalent interactions between the aromatic −NH group of the benzimidazole moieties present in Fe(II)-tris[2-(2′-pyridyl)benzimidazole] with the aliphatic ether (−O−) groups of the pluronic polymeric matrix. The nanoparticles show spin crossover behavior, two-step spin bistability, and wide magnetic hysteresis, expressed in the temperature range of 170–280 K (ΔTmax = 38 K). The neat SCO molecules, Fe(II)-tris[2-(2′-pyridyl)benzimidazole], on the contrary show only first-order spin transition and negligible hysteresis. The developed matrix-confinement approach of SCO molecules shown in this work yielded an unprecedented and significant improvement of the magnetic cooperativity compared to the neat spin crossover system, despit...

[1]  O. Sato Dynamic molecular crystals with switchable physical properties. , 2016, Nature chemistry.

[2]  E. Collet,et al.  First Step Towards a Devil's Staircase in Spin-Crossover Materials. , 2016, Angewandte Chemie.

[3]  M. Yamashita,et al.  Direct Observation of Ordered High-Spin-Low-Spin Intermediate States of an Iron(III) Three-Step Spin-Crossover Complex. , 2016, Angewandte Chemie.

[4]  J. Real,et al.  Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals , 2016 .

[5]  E. Coronado,et al.  Near Room‐Temperature Memory Devices Based on Hybrid Spin‐Crossover@SiO2 Nanoparticles Coupled to Single‐Layer Graphene Nanoelectrodes , 2016, Advanced materials.

[6]  M. Chergui,et al.  Sub-50-fs photoinduced spin crossover in [Fe(bpy)₃]²⁺. , 2015, Nature chemistry.

[7]  V. Ksenofontov,et al.  Synthesis of Nanocrystals and Particle Size Effects Studies on the Thermally Induced Spin Transition of the Model Spin Crossover Compound [Fe(phen)2(NCS)2]. , 2015, Inorganic chemistry.

[8]  Marinela M. Dîrtu,et al.  Water effect on the spin-transition behavior of Fe(II) 1,2,4-triazole 1D chains embedded in pores of MCM-41 , 2015 .

[9]  E. Natividad,et al.  Critical assessment of the nature and properties of Fe(II) triazole-based spin-crossover nanoparticles , 2015 .

[10]  Eugenio Coronado,et al.  Unravelling the chemical design of spin-crossover nanoparticles based on iron(ii)–triazole coordination polymers: towards a control of the spin transition , 2015, Journal of materials chemistry. C.

[11]  S. Brooker Spin crossover with thermal hysteresis: practicalities and lessons learnt. , 2015, Chemical Society reviews.

[12]  G. Molnár,et al.  Fe(Me2-bpy)2(NCSe)2 spin-crossover micro- and nanoparticles showing spin-state switching above 250 K , 2015 .

[13]  W. Nicolazzi,et al.  Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering , 2015 .

[14]  A. Stancu,et al.  Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model , 2014 .

[15]  Hirofumi Tanaka,et al.  Thin films of spin-crossover coordination polymers with large thermal hysteresis loops prepared by nanoparticle spin coating. , 2014, Chemical communications.

[16]  Graham N. Newton,et al.  Programmable spin-state switching in a mixed-valence spin-crossover iron grid , 2014, Nature Communications.

[17]  W. Nicolazzi,et al.  Finite size effects in molecular spin crossover materials , 2014 .

[18]  W. Nicolazzi,et al.  Emerging properties and applications of spin crossover nanomaterials , 2014 .

[19]  F. Quignard,et al.  Spin crossover polysaccharide nanocomposites , 2013 .

[20]  A. Cui,et al.  Spin transitions in Fe(II) metallogrids modulated by substituents, counteranions, and solvents. , 2013, Journal of the American Chemical Society.

[21]  M. Halcrow Spin-crossover materials : properties and applications , 2013 .

[22]  C. Enachescu,et al.  Control of the thermal hysteresis of the prototypal spin-transition FeII(phen)2(NCS)2 compound via the microcrystallites environment: experiments and mechanoelastic model , 2012 .

[23]  A. Bousseksou,et al.  Micro- and nanocrystals of the iron(III) spin-transition material [FeIII(3-MeO-SalEen)2]PF6 , 2012 .

[24]  A. Bousseksou,et al.  Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles. , 2011, Chemical communications.

[25]  Lan-sun Zheng,et al.  Spin-crossover Fe(II)4 squares: two-step complete spin transition and reversible single-crystal-to-single-crystal transformation. , 2011, Angewandte Chemie.

[26]  Kamel Boukheddaden,et al.  Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study , 2011 .

[27]  M. Kappes,et al.  Tuning the spin-transition properties of pyrene-decorated 2,6-bispyrazolylpyridine based Fe(II) complexes. , 2011, Dalton transactions.

[28]  S. Ohkoshi,et al.  Light-induced spin-crossover magnet. , 2011, Nature chemistry.

[29]  F. Evers,et al.  Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment , 2011 .

[30]  M. Halcrow,et al.  Structure:function relationships in molecular spin-crossover complexes. , 2011, Chemical Society reviews.

[31]  Azzedine Bousseksou,et al.  Molecular spin crossover phenomenon: recent achievements and prospects. , 2011, Chemical Society reviews.

[32]  Eugenio Coronado,et al.  Room‐Temperature Electrical Addressing of a Bistable Spin‐Crossover Molecular System , 2011, Advanced materials.

[33]  W. Nicolazzi,et al.  Cooperative spin crossover phenomena in [Fe(NH2trz)3](tosylate)2 nanoparticles. , 2010, Chemical communications.

[34]  E. Rivière,et al.  Thermo- and photoswitchable spin-crossover nanoparticles of an iron(II) complex trapped in transparent silica thin films. , 2010, Dalton transactions.

[35]  Eugenio Coronado,et al.  Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. , 2010, Inorganic chemistry.

[36]  Kazuya Saito,et al.  Multiple bistability and tristability with dual spin-state conversions in [Fe(dpp)2][Ni(mnt)2]2 x MeNO2. , 2010, Journal of the American Chemical Society.

[37]  Lan-sun Zheng,et al.  Solvent-induced transformation of single crystals of a spin-crossover (SCO) compound to single crystals with two distinct SCO centers. , 2010, Journal of the American Chemical Society.

[38]  Christophe Vieu,et al.  Soft lithographic patterning of spin crossover nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[39]  S. Sanvito,et al.  Electrostatic spin crossover effect in polar magnetic molecules. , 2009, Nature materials.

[40]  D. Denux,et al.  Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties. , 2009, Chemistry.

[41]  G. Pauliat,et al.  Observation of an asymmetry in the thermal hysteresis loop at the scale of a single spin-crossover particle , 2009 .

[42]  A. Spek,et al.  A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase. , 2008, Chemical communications.

[43]  W. Nicolazzi,et al.  Two-variable anharmonic model for spin-crossover solids : A like-spin domains interpretation , 2008 .

[44]  Jean-François Létard,et al.  Nanoparticles of iron(II) spin-crossover. , 2008, Chemical communications.

[45]  Philipp Gütlich,et al.  Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. , 2008, Angewandte Chemie.

[46]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.

[47]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .

[48]  J. Real,et al.  Dinuclear iron(II) spin crossover compounds: singular molecular materials for electronics , 2006 .

[49]  H. Okamoto,et al.  Two-step spin conversion in a cyanide-bridged ferrous square. , 2005, Angewandte Chemie.

[50]  J. Lehn,et al.  Synthesis of ionisable [2 x 2] grid-type metallo-arrays and reversible protonic modulation of the optical properties of the [Co4(II)L4]8+ species. , 2003, Chemical communications.

[51]  R. Boča,et al.  Spin crossover in iron(II) tris(2-(2′-pyridyl)benzimidazole) complex monitored by variable temperature methods: synchrotron powder diffraction, DSC, IR spectra, Mössbauer spectra, and magnetic susceptibility , 2003 .

[52]  Kamel Boukheddaden,et al.  Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach , 2000 .

[53]  K. Boukheddaden,et al.  Two-variable macroscopic model for spin-crossover solids: Static and dynamic effects of the correlations , 2000 .

[54]  Yann Garcia,et al.  Spin Crossover in a Supramolecular Fe4II [2×2] Grid Triggered by Temperature, Pressure, and Light , 2000 .

[55]  S. Asthana,et al.  Light‐Induced Stored Information in Nanoparticles , 2010 .

[56]  R. Boča,et al.  Complete spin crossover in tris(pyridylbenzimidazole) iron(II) , 1997 .