Robust$H_infty$Power Control for CDMA Cellular Communication Systems

Power control is an important factor for direct-sequence code division multiple access (DS-CDMA) cellular radio systems to achieve higher communication link quality and better system capacity. In order to track the desired signal-to-interference-plus-noise ratio (SINR) under round-trip delay, multiple access interference (MAI), channel fading, and noise, a time delay-based state-space model is developed for representing the tracking error dynamics and a state feedback controller is introduced for SINR tracking control. Then the power tracking problem can be regarded as a control problem. In this paper, a robust Hinfin power tracking control design is proposed to achieve a robust optimal SINR tracking from the minimization of the worst-case effect point of view. This robust optimal power tracking design problem can be transformed to solving the eigenvalue problem (EVP) under some linear matrix inequality (LMI) constraints. The LMI Matlab toolbox can be used to efficiently solve the EVP via convex optimization to achieve a robust optimal SINR tracking design. Under the proposed distributed framework, the information of channel gain is not needed

[1]  Bor-Sen Chen,et al.  Power control of cellular radio systems via robust Smith prediction filter , 2004, IEEE Transactions on Wireless Communications.

[2]  M. Gudmundson Correlation Model for Shadow Fading in Mobile Radio Systems , 1991 .

[3]  Gerard J. Foschini,et al.  A simple distributed autonomous power control algorithm and its convergence , 1993 .

[4]  Venugopal V. Veeravalli,et al.  Decentralized dynamic power control for cellular CDMA systems , 2003, IEEE Trans. Wirel. Commun..

[5]  L. F. Chang,et al.  Signal and interference statistics of a CDMA system with feedback power control , 1991, IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record.

[6]  Andrew J. Viterbi,et al.  Performance of power-controlled wideband terrestrial digital communication , 1993, IEEE Trans. Commun..

[7]  Gordon L. Stuber,et al.  Principles of mobile communication (2nd ed.) , 2001 .

[8]  Erry Gunawan,et al.  Characteristics of closed loop power control algorithms for a cellular DS/CDMA system , 1998 .

[9]  Bore-Kuen Lee,et al.  Adaptive power control of cellular CDMA systems via the optimal predictive model , 2005 .

[10]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[11]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[12]  W. C. Y. Lee,et al.  Overview of cellular CDMA , 1991 .

[13]  Andrew J. Viterbi,et al.  On the capacity of a cellular CDMA system , 1991 .

[14]  J. D. Parsons,et al.  Local mean signal variability in rural areas at 900 MHz , 1990, 40th IEEE Conference on Vehicular Technology.

[15]  Stephen P. Boyd,et al.  Optimal power control in interference-limited fading wireless channels with outage-probability specifications , 2002, IEEE Trans. Wirel. Commun..

[16]  Gordon L. Stüber Principles of mobile communication , 1996 .

[17]  Jens Zander,et al.  Centralized power control in cellular radio systems , 1993 .

[18]  L. B. Milstein,et al.  Spread spectrum for mobile communications , 1991 .

[19]  Jens Zander,et al.  Distributed cochannel interference control in cellular radio systems , 1992 .

[20]  Svein Haavik,et al.  Spread Spectrum in Mobile Communication , 1998 .

[21]  Jeffrey G. Andrews,et al.  Optimum power control for successive interference cancellation with imperfect channel estimation , 2003, IEEE Trans. Wirel. Commun..

[22]  Nikos D. Sidiropoulos,et al.  Kalman filtering for power estimation in mobile communications , 2003, IEEE Trans. Wirel. Commun..

[23]  Michael J. Grimble,et al.  Solution of the H∞ optimal linear filtering problem for discrete-time systems , 1990, IEEE Trans. Acoust. Speech Signal Process..

[24]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[25]  Fredrik Gustafsson,et al.  Power control in wireless communications networksߞFrom a control theory perspective , 2002 .

[26]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[27]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[28]  Xuemin Shen,et al.  A dynamic system approach to speech enhancement using the H∞ filtering algorithm , 1999, IEEE Trans. Speech Audio Process..

[29]  D. Giancristofaro,et al.  Correlation model for shadow fading in mobile radio channels , 1996 .

[30]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[31]  Y. Hara,et al.  On the capacity of cellular CDMA systems with multibeam antennas , 1998, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361).

[32]  Bor-Sen Chen,et al.  Adaptive power control of cellular CDMA systems via the optimal predictive model , 2005, IEEE Transactions on Wireless Communications.

[33]  Fredrik Gustafsson,et al.  Dynamical effects of time delays and time delay compensation in power controlled DS-CDMA , 2001, IEEE J. Sel. Areas Commun..

[34]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[35]  Cem U. Saraydar,et al.  Pricing and power control in a multicell wireless data network , 2001, IEEE J. Sel. Areas Commun..

[36]  Bor-Sen Chen,et al.  Mixed H2/H∞ filtering design in multirate transmultiplexer systems: LMI approach , 2001, IEEE Trans. Signal Process..

[37]  Evaggelos Geraniotis,et al.  Adaptive closed-loop power control with quantized feedback and loop filtering , 2002, IEEE Trans. Wirel. Commun..

[38]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .