An AR spectral analysis of non-stationary signals

Abstract A method of estimating an adaptive spectral density is described. At each time-sample of the signal an autoregressive (AR) filter is calculated by a covariance method. The length of the memory is adapted to the stationarity of the signal by a minimum prediction error power criterion. Advantages of a pole trajectories representation in the time frequency domain are illustrated. The evolution of the prediction error power and of the length of the memory versus time gives information about the stationarity of the signal. Resolution and precision obtained by this AR method are better than those obtained by a Fourier Transform method.

[1]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[2]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[3]  D. E. Smylie,et al.  Analysis of Irregularities in the Earth's Rotation , 1973 .

[4]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[5]  Jean-Louis Lacoume,et al.  Close frequencies resolution by maximum entropy spectral estimators , 1982, ICASSP.

[6]  L. Marple A new autoregressive spectrum analysis algorithm , 1980 .

[7]  O. L. Frost Power-Spectrum Estimation , 1977 .

[8]  S. Lawrence Marple,et al.  Sources of and remedies for spectral line splitting in autoregressive spectrum analysis , 1979, ICASSP.

[9]  T. Ulrych,et al.  Time series modeling and maximum entropy , 1976 .

[10]  J. Zeidler,et al.  Maximum entropy spectral analysis of multiple sinusoids in noise , 1978 .

[11]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[12]  G. S. Stiles Comment on ‘Fast time resolved spectral analysis of VLF banded emissions’ by F. V. Coroniti, R. W. Fredricks, C. F. Kennel, and F. L. Scarf , 1975 .

[13]  K. Kodera,et al.  Analysis of time-varying signals with small BT values , 1978 .

[14]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[15]  C. Kennel,et al.  FAST TIME-RESOLVED SPECTRAL ANALYSIS OF VLF BANDED EMISSIONS. , 1971 .

[16]  Albert H Nuttall,et al.  Spectral Analysis of a Univariate Process with Bad Data Points, via Maximum Entropy and Linear Predictive Techniques , 1976 .

[17]  P. Fougere,et al.  Spontaneous line splitting in maximum entropy power spectrum analysis , 1976 .

[18]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[19]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[20]  R. Lacoss DATA ADAPTIVE SPECTRAL ANALYSIS METHODS , 1971 .

[21]  K. Madsen A root-finding algorithm based on Newton's method , 1973 .

[22]  M. Gharbi,et al.  Close frequency resolution by maximum entropy spectral estimators , 1984 .

[23]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .