Using ConceptNet to Teach Common Sense to an Automated Theorem Prover

The CoRg system is a system to solve commonsense reasoning problems. The core of the CoRg system is the automated theorem prover Hyper that is fed with large amounts of background knowledge. This background knowledge plays a crucial role in solving commonsense reasoning problems. In this paper we present different ways to use knowledge graphs as background knowledge and discuss challenges that arise.

[1]  Frieder Stolzenburg,et al.  Commonsense Reasoning Using Theorem Proving and Machine Learning , 2019, CD-MAKE.

[2]  Andrei Voronkov,et al.  Sine Qua Non for Large Theory Reasoning , 2011, CADE.

[3]  Andrew S. Gordon,et al.  One Hundred Challenge Problems for Logical Formalizations of Commonsense Psychology , 2015, AAAI Spring Symposia.

[4]  Javier Álvez,et al.  Adimen-SUMO: Reengineering an Ontology for First-Order Reasoning , 2012, Int. J. Semantic Web Inf. Syst..

[5]  Simon Ostermann,et al.  SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge , 2018, *SEMEVAL.

[6]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[7]  Nathanael Chambers,et al.  LSDSem 2017 Shared Task: The Story Cloze Test , 2017, LSDSem@EACL.

[8]  Simone Paolo Ponzetto,et al.  BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network , 2012, Artif. Intell..

[9]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[10]  Claudia Schon,et al.  System Description: E-KRHyper 1.4 - Extensions for Unique Names and Description Logic , 2013, CADE.

[11]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[12]  Elena Cabrio,et al.  KNEWS: Using Logical and Lexical Semantics to Extract Knowledge from Natural Language , 2016, ECAI 2016.

[13]  Hector J. Levesque,et al.  The Winograd Schema Challenge , 2011, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[14]  Bowen Zhou,et al.  LSTM-based Deep Learning Models for non-factoid answer selection , 2015, ArXiv.

[15]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[16]  Ulrich Furbach,et al.  Names Are Not Just Sound and Smoke: Word Embeddings for Axiom Selection , 2019, CADE.

[17]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[18]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[19]  Zornitsa Kozareva,et al.  SemEval-2012 Task 7: Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning , 2011, *SEMEVAL.

[20]  Gerhard Weikum,et al.  YAGO: A Large Ontology from Wikipedia and WordNet , 2008, J. Web Semant..