An Adaptable Surface Parameterization Method

Parameterizations of triangulated surfaces are used in an increasing number of mesh processing applications for various purposes. Although demands vary, they are often required to preserve the surface metric and thus minimize angle, area and length deformation. However, most of the existing techniques primarily target at angle preservation while disregarding global area deformation. In this paper an energy functional is proposed, that quantifies angle and global area deformations simultaneously, while the relative importance between angle and area preservation can be controlled by the user through a parameter. We show how this parameter can be chosen to obtain parameterizations, that are optimized for an uniform sampling of the surface of a model. Maps obtained by minimizing this energy are well suited for applications that desire an uniform surface sampling, like re-meshing or mapping regularly patterned textures. Besides being invariant under rotation and translation of the domain, the energy is designed to prevent face flips during minimization and does not require a fixed boundary in the parameter domain. Although the energy is nonlinear, we show how it can be minimized efficiently using non-linear conjugate gradient methods in a hierarchical optimization framework and prove the convergence of the algorithm. The ability to control the tradeoff between the degree of angle and global area preservation is demonstrated for several models of varying complexity.

[1]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[2]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[3]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[4]  W. T. Tutte Convex Representations of Graphs , 1960 .

[5]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[6]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[7]  Gabriel Taubin,et al.  Space‐Optimized Texture Maps , 2002 .

[8]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[9]  Fausto Bernardini,et al.  Cut-and-paste editing of multiresolution surfaces , 2002, SIGGRAPH.

[10]  J. Eells,et al.  Another Report on Harmonic Maps , 1988 .

[11]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[12]  Pedro V. Sander,et al.  Signal-Specialized Parametrization , 2002, Rendering Techniques.

[13]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[14]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[15]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[16]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[17]  D. T. Lee,et al.  An Optimal Algorithm for Finding the Kernel of a Polygon , 1979, JACM.

[18]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[19]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[20]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[21]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[22]  Alla Sheffer,et al.  Smoothing an overlay grid to minimize linear distortion in texture mapping , 2002, TOGS.

[23]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[24]  John M. Snyder,et al.  Signal-Specialized Parameterization , 2002 .

[25]  Elizabeth Greenwell Yanik,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing 2nd Ed. (W. H. Press, W. T. Vetterling, S. A. Teukolsky and B. P. Flannery) , 1994, SIAM Rev..

[26]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .