BIBLIOGRAPHIC DATA AND CLASSIFICATIONS

Although the textbook Dantzig-Wolfe decomposition reformulation for the capacitated lot-sizing problem, as already proposed by Manne [Manne, A. S. 1958. Programming of economic lot sizes. Management Sci.4(2) 115--135], provides a strong lower bound, it also has an important structural deficiency. Imposing integrality constraints on the columns in the master program will not necessarily give the optimal integer programming solution. Manne's model contains only production plans that satisfy the Wagner-Whitin property, and it is well known that the optimal solution to a capacitated lot-sizing problem will not necessarily satisfy this property. The first contribution of this paper answers the following question, unsolved for almost 50 years: If Manne's formulation is not equivalent to the original problem, what is then a correct reformulation? We develop an equivalent mixed-integer programming (MIP) formulation to the original problem and show how this results from applying the Dantzig-Wolfe decomposition to the original MIP formulation. The set of extreme points of the lot-size polytope that are needed for this MIP Dantzig-Wolfe reformulation is much larger than the set of dominant plans used by Manne. We further show how the integrality restrictions on the original setup variables translate into integrality restrictions on the new master variables by separating the setup and production decisions. Our new formulation gives the same lower bound as Manne's reformulation. Second, we develop a branch-and-price algorithm for the problem. Computational experiments are presented on data sets available from the literature. Column generation is accelerated by a combination of simplex and subgradient optimization for finding the dual prices. The results show that branch-and-price is computationally tractable and competitive with other state-of-the-art approaches found in the literature.

[1]  G. D. Eppen,et al.  Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition , 1987, Oper. Res..

[2]  Jacques Desrosiers,et al.  Time Constrained Routing and Scheduling , 1992 .

[3]  Dennis Huisman,et al.  Combining Column Generation and Lagrangian Relaxation , 2005 .

[4]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[5]  W. Zangwill A Deterministic Multi-Period Production Scheduling Model with Backlogging , 1966 .

[6]  Gabriel R. Bitran,et al.  The Multi-Item Capacitated Lot Size Problem: Error Bounds of Manne's Formulations , 1986 .

[7]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[8]  J. B. G. Frenk,et al.  Recursive Approximation of the High Dimensional Max Function , 2003, Oper. Res. Lett..

[9]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[10]  Laurence A. Wolsey,et al.  Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs , 2001, Manag. Sci..

[11]  Ellis L. Johnson Modelling and strong linear programs for mixed integer programming , 1989 .

[12]  Martin W. P. Savelsbergh,et al.  A generic view of Dantzig-Wolfe decomposition in mixed integer programming , 2006, Oper. Res. Lett..

[13]  Yves Pochet Valid inequalities and separation for capacitated economic lot sizing , 1988 .

[14]  Laurence A. Wolsey,et al.  An exact algorithm for IP column generation , 1994, Oper. Res. Lett..

[15]  G. Cornuéjols,et al.  A comparison of heuristics and relaxations for the capacitated plant location problem , 1991 .

[16]  François Vanderbeck,et al.  On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm , 2000, Oper. Res..

[17]  L. V. Wassenhove,et al.  Set partitioning and column generation heuristics for capacitated dynamic lotsizing , 1990 .

[18]  U. Karmarkar,et al.  Computationally Efficient Optimal Solutions to the Lot-Sizing Problem in Multistage Assembly Systems , 1984 .

[19]  Martin W. P. Savelsbergh,et al.  A Branch-and-Price Algorithm for the Generalized Assignment Problem , 1997, Oper. Res..

[20]  Martin W. P. Savelsbergh,et al.  On the capacitated lot-sizing and continuous 0-1 knapsack polyhedra , 2000, Eur. J. Oper. Res..

[21]  Zeger Degraeve,et al.  Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results , 2003, INFORMS J. Comput..

[22]  Zeger Degraeve,et al.  Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches , 2004, Eur. J. Oper. Res..

[23]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[24]  Zeger Degraeve,et al.  Optimal Integer Solutions to Industrial Cutting Stock Problems , 1999, INFORMS J. Comput..

[25]  L Van Wassenhove,et al.  Lagrangean Relaxation for the Multi-Item Capacitated Lot-Sizing Problem , 1985 .

[26]  Warren B. Powell,et al.  Solving Parallel Machine Scheduling Problems by Column Generation , 1999, INFORMS J. Comput..

[27]  Alan S. Manne,et al.  Programming of Economic Lot Sizes , 1958 .

[28]  François Vanderbeck,et al.  Computational study of a column generation algorithm for bin packing and cutting stock problems , 1999, Math. Program..

[29]  J. Beasley Lagrangean heuristics for location problems , 1993 .

[30]  William W. Trigeiro,et al.  Capacitated lot sizing with setup times , 1989 .

[31]  R. Kipp Martin,et al.  Generating Alternative Mixed-Integer Programming Models Using Variable Redefinition , 1987, Oper. Res..

[32]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[33]  R. Kipp Martin,et al.  Large scale linear and integer optimization - a unified approach , 1998 .

[34]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[35]  Laurence A. Wolsey,et al.  Strong Formulations for Multi-Item Capacitated Lot Sizing , 1984 .

[36]  Han Hoogeveen,et al.  Parallel Machine Scheduling by Column Generation , 1999, Oper. Res..

[37]  Marshall L. Fisher,et al.  An Applications Oriented Guide to Lagrangian Relaxation , 1985 .

[38]  Martin Desrochers,et al.  A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows , 1990, Oper. Res..

[39]  Ke Ding,et al.  A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover , 2001, Manag. Sci..

[40]  Thomas L. Magnanti,et al.  Facets and algorithms for capacitated lot sizing , 1989, Math. Program..

[41]  M. Lambrecht,et al.  Heuristic Procedures for the Single Operation, Multi-Item Loading Problem , 1979 .

[42]  P. R. Kleindorfer,et al.  A Lower Bounding Structure for Lot-Size Scheduling Problems , 1975, Oper. Res..

[43]  Zeger Degraeve,et al.  Improved lower bounds for the capacitated lot sizing problem with setup times , 2004, Oper. Res. Lett..

[44]  Terry P. Harrison,et al.  Lot-Sizing with Start-Up Times , 1998 .

[45]  George L. Nemhauser,et al.  Airline Crew Scheduling: A New Formulation and Decomposition Algorithm , 1997, Oper. Res..

[46]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[47]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[48]  B. P. Dzielinski,et al.  Optimal Programming of Lot Sizes, Inventory and Labor Allocations , 1965 .

[49]  M. Florian,et al.  DETERMINISTIC PRODUCTION PLANNING WITH CONCAVE COSTS AND CAPACITY CONSTRAINTS. , 1971 .

[50]  Cynthia Barnhart,et al.  Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems , 2000, Oper. Res..

[51]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[52]  Laurence A. Wolsey,et al.  bc -- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems , 2000 .

[53]  Marisa de Brito,et al.  Product Return Handling: decision-making and quantitative support , 2003 .