Tutorial on the fitting of kinetics models to multivariate spectroscopic measurements with non-linear least-squares regression

The continuing development of modern instrumentation means an increasing amount of data is being delivered in less time. As a consequence, it is crucial that research into techniques for the analysis of large data sets continues. However, even more crucial is that once developed these techniques are disseminated to the wider chemical community. In this tutorial, all the steps involved in the fitting of a chemical model, based on reaction kinetics, to measured multiwavelength spectroscopic data are presented. From postulation of the chemical model and derivation of the appropriate differential equations, through to calculating the concentration profiles and, using non-linear regression, fitting of the rate constants of the model to measured multiwavelength data. The benefits of using multiwavelength data are both discussed and demonstrated. A number of real examples where the described techniques are applied to real measurements are also given. © 2005 Elsevier B.V. All rights reserved.

[1]  Renato Paludetto,et al.  Batch and semibatch catalytic reactors (from theory to practice) , 1999 .

[2]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[3]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[4]  Graeme Puxty,et al.  Analyses of three-way data from equilibrium and kinetic investigations , 2003 .

[5]  Debabrata Chatterjee,et al.  Interaction of [RuIII(edta)(H2O)]− with amino acids in aqueous solution. Equilibrium, kinetic and protease inhibition studies , 2003 .

[6]  Marcel Maeder,et al.  Second-order globalisation for the determination of activation parameters in kinetics , 1994 .

[7]  Reinhart Heinrich,et al.  Optimization of kinetic parameters of enzymes , 2002 .

[8]  Shinkichi Yamada,et al.  Enhanced reactivity of nickel(II) complexes involving multidentate ligands in their complexation , 1984 .

[9]  K. Hungerbühler,et al.  Identification of kinetic and thermodynamic reaction parameters from online calorimetric and IR-ATR data using a new combined evaluation algorithm , 2004 .

[10]  H. Elias,et al.  Visible spectra of the complex species Ni(en)32+, Ni(en)2(H2O)22+ and Ni(en)(H2O)42+ from kinetic studies , 1987 .

[11]  A. Smilde,et al.  Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution , 2000 .

[13]  A. Smilde,et al.  Determination of Rate Constants in Second-Order Kinetics Using UV-Visible Spectroscopy , 2001 .

[14]  Peter B. Moore,et al.  KINETIC AND SPECTROSCOPIC STUDIES WITH A RAPID SCANNING SPECTROMETER. PART 1. RANSIENT INTERMEDIATES IN THE DISSOCIATION OF NICKEL(II) POLYAMINE COMPLEXES , 1979 .

[15]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[16]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[17]  Peter G. Lye,et al.  Formation kinetics of pendant arm polyamine macrocycles with copper(II) , 2001 .

[18]  H. Rabitz,et al.  IDENTIFIABILITY AND DISTINGUISHABILITY OF GENERAL REACTION SYSTEMS , 1994 .

[19]  T. Kaden,et al.  Handling of electronic absorption spectra with a desk-top computer-II: calculation of stability constants from spectrophotometric titrations. , 1979, Talanta.

[20]  José Luis González,et al.  Optimization of kinetic parameters. Multipurpose KINAGDC(MW) non-linear regression program , 1997 .

[21]  Olof Svensson,et al.  Estimation of kinetic parameters from non-isothermal batch experiments monitored by in situ vibrational spectroscopy , 2003 .

[22]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[23]  Jay R. Knutson,et al.  Simultaneous analysis of multiple fluorescence decay curves: A global approach , 1983 .

[24]  M. Maeder,et al.  The resolution of overlapping chromatographic peaks by evolving factor analysis , 1986 .

[25]  Graeme Puxty,et al.  Calibration-free estimates of batch process yields and detection of process upsets using in situ spectroscopic measurements and nonisothermal kinetic models: 4-(dimethylamino)pyridine- catalyzed esterification of butanol. , 2004, Analytical chemistry.

[26]  Lionel Estel,et al.  Kinetic parameter estimation of solvent-free reactions: application to esterification of acetic anhydride by methanol , 2002 .

[27]  Marcel Maeder,et al.  Second order global analysis: the evaluation of series of spectrophotometric titrations for improved determination of equilibrium constants , 1997 .

[28]  Yih-Shing Duh,et al.  Applications of reaction calorimetry in reaction kinetics and thermal hazard evaluation , 1996 .

[29]  J. Gonzalez-Hernandez,et al.  A new computational application of the AGDC algorithm for kinetic resolution of multicomponent mixtures (static and dynamic) , 2003 .

[30]  A. K. Shamsuddin Ahmed,et al.  751. Factors influencing the rates of dissociation of metal complexes. Part I. The mechanism of dissociation of mono(ethylenediamine)-nickel(II) ion , 1959 .

[31]  J. Lumsden,et al.  Elementary statistical method , 1971 .

[32]  Peter B. Moore,et al.  Kinetic and spectroscopic studies with a rapid-scanning spectrometer. Part 1. Transient intermediates in the dissociation of nickel(II) polyamine complexes , 1979 .

[33]  P. D. Vowles,et al.  Consecutive, irreversible first‐order reactions. Ambiguities and practical aspects of kinetic analyses , 1977 .

[34]  Erik Furusjö,et al.  A method for the determination of reaction mechanisms and rate constants from two-way spectroscopic data , 1998 .

[35]  Romà Tauler,et al.  Application of a novel resolution approach combining soft- and hard-modelling features to investigate temperature-dependent kinetic processes , 2001 .

[36]  Graeme Puxty,et al.  Simulation of Complex Chemical Kinetics , 2003 .

[37]  M. Maeder,et al.  Nonlinear least-squares fitting of multivariate absorption data , 1990 .

[38]  James H. Espenson,et al.  Chemical kinetics and reaction mechanisms , 1981 .

[39]  Marcel Maeder,et al.  Analysis of non-isothermal kinetic measurements , 1997 .

[40]  A. K. Shamsuddin Ahmed,et al.  584. Factors influencing the rates of dissociation of metal complexes. Part II. The dissociation of complexes of nickel with various diamines , 1960 .

[41]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[42]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[43]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[44]  R. R. Rhinehart,et al.  Modeling of batch reactions with in situ spectroscopic measurements and calorimetry , 2005 .

[45]  A. Smilde,et al.  Constrained least squares methods for estimating reaction rate constants from spectroscopic data , 2002 .

[46]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[47]  R. Tauler,et al.  Combining hard- and soft-modelling to solve kinetic problems , 2000 .

[48]  R. Leardi Genetic algorithms in chemometrics and chemistry: a review , 2001 .

[49]  J. B. Morgan,et al.  Calculus with Analytical Geometry and Linear Algebra , 1968 .

[50]  Graeme Puxty,et al.  Analysis of reactions in aqueous solution at non-constant pH: no more buffers? , 2003 .

[51]  A. K. Shamsuddin Ahmed,et al.  585. Factors influencing the rates of dissociation of metal complexes. Part III. The dissociation of bis(ethylenediamine)- and tris-(ethylenediamine)-nickel complexes and of the racemic 2,3-diaminobutane analogues , 1960 .

[52]  and George P. Wadsworth Pease,et al.  Calculus with Analytical Geometry , 1969 .

[53]  F. Perez Pla,et al.  Multi-component analysis using OPKINE, a program for the non-linear treatment of kinetic problems , 1990 .