Feedback min‐max model predictive control using a single linear program: robust stability and the explicit solution

In this paper we introduce a new stage cost and show that the use of this cost allows one to formulate a robustly stable feedback min–max model predictive control problem that can be solved using a single linear program. Furthermore, this is a multi‐parametric linear program, which implies that the optimal control law is piecewise affine and can be explicitly pre‐computed so that the linear program does not have to be solved on‐line. We assume that the plant model is known, is discrete‐time and linear time‐invariant, is subject to unknown but bounded state disturbances and that the states of the system are measured. Two numerical examples are presented; one of these is taken from the literature, so that a direct comparison of solutions and computational complexity with earlier proposals is possible. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  H. Witsenhausen A minimax control problem for sampled linear systems , 1968 .

[2]  Michel C. Delfour,et al.  Reachability of Perturbed Systems and Min Sup Problems , 1969 .

[3]  F. Schweppe,et al.  Control of linear dynamic systems with set constrained disturbances , 1971 .

[4]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[5]  D. Bertsekas,et al.  Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems , 1973 .

[6]  J. G. Evans,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .

[7]  Franco Blanchini,et al.  Minimum-time control for uncertain discrete-time linear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  B. Kouvaritakis,et al.  Stable generalised predictive control: an algorithm with guaranteed stability , 1992 .

[9]  J. Allwright,et al.  On linear programming and robust modelpredictive control using impulse-responses , 1992 .

[10]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[12]  Z. Zheng Robust Control of Systems Subject to Contraints , 1995 .

[13]  Ilya Kolmanovsky,et al.  Maximal output admissible sets for discrete-time systems with disturbance inputs , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  Mayuresh V. Kothare,et al.  Control of Systems Subject to Constraints , 1997 .

[15]  David Q. Mayne,et al.  Robust time-optimal control of constrained linear Systems , 1997, Autom..

[16]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[17]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[18]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[19]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[20]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[21]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[22]  Basil Kouvaritakis,et al.  Efficient robust predictive control , 2000, IEEE Trans. Autom. Control..

[23]  James B. Rawlings,et al.  Linear programming and model predictive control , 2000 .

[24]  Basil Kouvaritakis,et al.  A linear programming approach to constrained robust predictive control , 2000, IEEE Trans. Autom. Control..

[25]  M. Morari,et al.  The explicit solution of constrained LP-based receding horizon control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[26]  M. Morari,et al.  Robust model predictive control: Piecewise linear explicit solution , 2001, 2001 European Control Conference (ECC).

[27]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[28]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[29]  D. Mayne,et al.  Optimal control of constrained, piecewise affine systems with bounded disturbances , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[30]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[31]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[32]  Basil Kouvaritakis,et al.  Nonlinear model predictive control with polytopic invariant sets , 2003, Autom..

[33]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[34]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[35]  M. Morari,et al.  A geometric algorithm for multi-parametric linear programming , 2003 .

[36]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[37]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[38]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[39]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..