LI-Yorke sensitivity and other concepts of chaos
暂无分享,去创建一个
[1] A. N. Sharkovskiĭ. COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .
[2] Jaroslav Smítal,et al. Chaotic functions with zero topological entropy , 1986 .
[3] Paul R. Halmos,et al. Review: W. H. Gottschalk and G. A. Hedlund, Topological dynamics , 1955 .
[4] Jaroslav Smítal,et al. CHARACTERIZATIONS OF WEAKLY CHAOTIC MAPS OF THE INTERVAL , 1990 .
[5] J. Auslander,et al. Minimal flows and their extensions , 1988 .
[6] Jonathan L. King,et al. A map with topological minimal self-joinings in the sense of del Junco , 1990, Ergodic Theory and Dynamical Systems.
[7] B. Weiss,et al. Sensitive dependence on initial conditions , 1993 .
[8] François Blanchard,et al. On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).
[9] F. Blanchard,et al. Asymptotic pairs in positive-entropy systems , 2002, Ergodic Theory and Dynamical Systems.
[10] B. Weiss,et al. LOCALLY EQUICONTINUOUS DYNAMICAL SYSTEMS , 2000 .
[11] F. Takens,et al. On the nature of turbulence , 1971 .
[12] V. V. Fedorenko,et al. Dynamics of One-Dimensional Maps , 1997 .
[13] Ethan Akin,et al. When is a Transitive Map Chaotic , 1996 .
[14] Dynamical systems disjoint from any minimal system , 2004 .
[15] А. Н. Шарковскуй. О циклах и структуре непрерынвного отображения , 1965 .
[16] W. A. Coppel,et al. Dynamics in One Dimension , 1992 .
[17] Independent sets of transitive points , 1989 .
[18] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[19] S. Glasner,et al. Rigidity in topological dynamics , 1989, Ergodic Theory and Dynamical Systems.
[20] Noninvertible minimal maps , 2001 .
[21] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[22] R. Ellis. A semigroup associated with a transformation group , 1960 .
[23] J. Banks,et al. Regular periodic decompositions for topologically transitive maps , 1997, Ergodic Theory and Dynamical Systems.
[24] Wen Huang,et al. Devaney's chaos or 2-scattering implies Li–Yorke's chaos , 2002 .
[25] On scrambled sets for chaotic functions , 1987 .
[26] E. Akin,et al. Residual properties and almost equicontinuity , 2001 .
[27] James A. Yorke,et al. INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .
[28] Angelo Vulpiani,et al. Chaotic Dynamical Systems , 1993 .
[29] L. Snoha,et al. Stroboscopical property in topological dynamics , 2003 .
[30] Ethan Akin,et al. The general topology of dynamical systems , 1993 .
[31] Jan Mycielski,et al. Independent sets in topological algebras , 1964 .
[32] Benjamin Weiss,et al. Topological transitivity and ergodic measures , 1971, Mathematical systems theory.
[33] Ethan Akin,et al. Li-Yorke sensitivity , 2003 .
[34] K. Sigmund,et al. Ergodic Theory on Compact Spaces , 1976 .
[35] A characterization of chaos , 1986, Bulletin of the Australian Mathematical Society.
[36] M. Misiurewicz,et al. Combinatorial Dynamics and Entropy in Dimension One , 2000 .
[37] W. D. Melo,et al. ONE-DIMENSIONAL DYNAMICS , 2013 .