On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model
暂无分享,去创建一个
[1] E. S. Titi,et al. Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models , 2006 .
[2] R. Kraichnan. Inertial Ranges in Two‐Dimensional Turbulence , 1967 .
[3] R. Temam. Navier-Stokes Equations , 1977 .
[4] B. Geurts,et al. Regularization modeling for large-eddy simulation of homogeneous isotropic decaying turbulence , 2008 .
[5] J. Lions. Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires , 1959 .
[6] Darryl D. Holm,et al. On the Clark–α model of turbulence: global regularity and long-time dynamics , 2004, nlin/0412007.
[7] E. Titi,et al. Analytic study of shell models of turbulence , 2005, physics/0511075.
[8] A. Kolmogorov,et al. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[9] R. Rosa. Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence , 2002 .
[10] Darryl D. Holm,et al. The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.
[11] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[12] C. Foias. What do the Navier-Stokes equations tell us about turbulence , 1995 .
[13] D. W.. In memory of ... , 1963, Science.
[14] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[15] Alexei Ilyin,et al. A modified-Leray-α subgrid scale model of turbulence , 2006 .
[16] Damien Vandembroucq,et al. Improved shell model of turbulence , 1998, chao-dyn/9803025.
[17] Meinhard E. Mayer,et al. Navier-Stokes Equations and Turbulence , 2008 .
[18] A. P. Oskolkov. Theory of voight fluids , 1983 .
[19] E. Lunasin,et al. A study of the Navier-Stokes-α model for two-dimensional turbulence , 2007 .
[20] A. Townsend,et al. The nature of turbulent motion at large wave-numbers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[21] Darryl D. Holm,et al. On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] E. Titi,et al. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations , 2007, 0705.3972.
[23] E. Titi,et al. Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations , 2007, 0709.3328.
[24] Darryl D. Holm,et al. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Hantaek Bae. Navier-Stokes equations , 1992 .
[26] She,et al. Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.
[27] S. Kurien,et al. Cascade time scales for energy and helicity in homogeneous isotropic turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.