On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model

The Navier-Stokes-Voigt (NSV) model of viscoelastic incompressible fluid has been recently proposed as a regularization of the 3D NavierStokes equations for the purpose of direct numerical simulations. In this work we investigate its statistical properties by employing phenomenological heuristic arguments, in combination with Sabra shell model simulations of the analogue of the NSV model. For large values of the regularizing parameter, compared to the Kolmogorov length scale, simulations exhibit multiscaling inertial range, and the dissipation range displaying low intermittency. These facts provide evidence that the NSV regularization may reduce the stiffness of direct numerical simulations of turbulent flows, with a small impact on the energy containing scales. AMS subject classification: 35Q30, 35Q35, 76F20, 76F55

[1]  E. S. Titi,et al.  Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models , 2006 .

[2]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  B. Geurts,et al.  Regularization modeling for large-eddy simulation of homogeneous isotropic decaying turbulence , 2008 .

[5]  J. Lions Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires , 1959 .

[6]  Darryl D. Holm,et al.  On the Clark–α model of turbulence: global regularity and long-time dynamics , 2004, nlin/0412007.

[7]  E. Titi,et al.  Analytic study of shell models of turbulence , 2005, physics/0511075.

[8]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  R. Rosa Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence , 2002 .

[10]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[11]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[12]  C. Foias What do the Navier-Stokes equations tell us about turbulence , 1995 .

[13]  D. W. In memory of ... , 1963, Science.

[14]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[15]  Alexei Ilyin,et al.  A modified-Leray-α subgrid scale model of turbulence , 2006 .

[16]  Damien Vandembroucq,et al.  Improved shell model of turbulence , 1998, chao-dyn/9803025.

[17]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[18]  A. P. Oskolkov Theory of voight fluids , 1983 .

[19]  E. Lunasin,et al.  A study of the Navier-Stokes-α model for two-dimensional turbulence , 2007 .

[20]  A. Townsend,et al.  The nature of turbulent motion at large wave-numbers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Darryl D. Holm,et al.  On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  E. Titi,et al.  Global attractors and determining modes for the 3D Navier-Stokes-Voight equations , 2007, 0705.3972.

[23]  E. Titi,et al.  Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations , 2007, 0709.3328.

[24]  Darryl D. Holm,et al.  Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Hantaek Bae Navier-Stokes equations , 1992 .

[26]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[27]  S. Kurien,et al.  Cascade time scales for energy and helicity in homogeneous isotropic turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.