Radiative torque alignment: essential physical processes

We study the physical processes that affect the alignment of grains subject to radiative torques (RATs). To describe the action of RATs, we use the analytical model (AMO) of RATs introduced in our previous paper. We focus our discussion on the alignment by anisotropic radiation flux with respect to the magnetic field, which defines the axis of grain Larmor precession. Such an alignment does not invoke paramagnetic dissipation (i.e. the Davis-Greenstein mechanism), but, nevertheless, grains tend to be aligned with long axes perpendicular to the magnetic field. When we account for thermal fluctuations within grains, we show that for grains that are characterized by a triaxial ellipsoid of inertia, the zero-J attractor point obtained in our earlier study develops into a low-J attractor point. The value of angular momentum at the low-J attractor point is of the order of the thermal angular momentum corresponding to the grain temperature. We show that, for situations when the direction of radiative flux is nearly perpendicular to a magnetic field, the alignment of grains with long axes parallel to the magnetic field (i.e. 'wrong alignment') reported in our previous paper, disappears in the presence of thermal fluctuations. Thus, all grains are aligned with their long axes perpendicular to the magnetic field. We study the effects of stochastic gaseous bombardment and show that gaseous bombardment can drive grains from low-J to high-J attractor points in cases when high-J attractor points are present. As the alignment of grain axes with respect to angular momentum is higher for higher values of J, counter-intuitively, gaseous bombardment can increase the degree of grain alignment with respect to the magnetic field. We also study the effects of torques induced by H 2 formation and show that they can change the value of angular momentum at high-J attractor points, but marginally affect the value of angular momentum at low-J attractor points. We compare the AMO results with those obtained using the direct numerical calculations of RATs acting upon irregular grains and we validate the use of the AMO for realistic situations of RAT alignment.

[1]  A. Lazarian,et al.  Alignment of Dust with Magnetic Inclusions: Radiative Torques and Superparamagnetic Barnett and Nuclear Relaxation , 2008, 0801.0265.

[2]  S. Hanany,et al.  Grain alignment by ambipolar diffusion in molecular clouds , 1995 .

[3]  L. Aller,et al.  Nebulae and Interstellar Matter , 1968 .

[4]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[5]  F. Motte,et al.  L183 (L134n) revisited. II. The dust content , 2004 .

[6]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[7]  F. Motte,et al.  L183 (=L134N) revisited , 2003 .

[8]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[9]  A. Yan Grain Dynamics In Magnetized Interstellar Gas , 2001, astro-ph/0112365.

[10]  A. Lazarian,et al.  Subsonic Mechanical Alignment of Irregular Grains , 2007, 0707.3805.

[11]  L. Spitzer,et al.  Magnetic Alignment of Interstellar Grains , 1967 .

[12]  W. G. Roberge,et al.  Barnett Relaxation in Thermally Rotating Grains , 1997 .

[13]  J. Hough,et al.  Magnetic fields in discs: what can be learned from infrared and mm polarimetry? , 2002 .

[14]  T. Gold The Alignment of Galactic Dust , 1952 .

[15]  Xiaolei Zhang,et al.  Secular Evolution of Spiral Galaxies. II. Formation of Quasi-Stationary Spiral Modes , 1998 .

[16]  J S Hall,et al.  Observations of the Polarized Light From Stars. , 1949, Science.

[17]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[18]  A. Chepurnov,et al.  Polarization of Dust Emission in Clumpy Molecular Clouds and Cores , 2006, astro-ph/0611324.

[19]  A. Z. Dolginov,et al.  Orientation of cosmic dust grains , 1976 .

[20]  C. D. Wilson,et al.  MAGNETIC FIELDS IN STAR-FORMING MOLECULAR CLOUDS. II. THE DEPOLARIZATION EFFECT IN THE OMC-3 FILAMENT OF ORION A , 2001 .

[21]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[22]  J. Flaherty,et al.  The Langevin equation and its application to grain alignment in molecular clouds , 1993 .

[23]  E. Purcell,et al.  Orientation of Rotating Grains , 1971 .

[24]  J. Hough,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[25]  Philip C. Myers,et al.  On the Efficiency of Grain Alignment in Dark Clouds , 1997, astro-ph/9706163.

[26]  J. Hough,et al.  Spectropolarimetry of the 3-µm ice feature in molecular clouds – II. GL 2591, GL 2136, W33A and Elias 29 (ρ Ophiuchi dark cloud) , 1989 .

[27]  J. Mathis The alignment of interstellar grains , 1986 .

[28]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains. III. Dynamics with Thermal Relaxation , 2002 .

[29]  B. Draine,et al.  Nuclear Spin Relaxation within Interstellar Grains , 1999, astro-ph/9903235.

[30]  B. Wilson Magnetic Fields in Star-forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud , 2002, astro-ph/0205328.

[31]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[32]  Davis—Greenstein alignment of oblate spheroidal grains , 1998, astro-ph/9812329.

[33]  A. Lazarian,et al.  Dust Dynamics in Compressible Magnetohydrodynamic Turbulence , 2004, astro-ph/0408173.

[34]  Paramagnetic alignment of thermally rotating dust , 1997, astro-ph/9702137.

[35]  Gold alignment & internal dissipation , 1997, astro-ph/9702136.

[36]  T. Gold,et al.  Polarization of Starlight , 1952, Nature.

[37]  M. Harwit Is Magnetic Alignment of Interstellar Dust Really Necessary ? , 1970, Nature.

[38]  S. Potter,et al.  Observational Constraints on Interstellar Grain Alignment , 2007, 0705.1306.

[39]  J. P. Laboratory,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. II. NGC 2024 FIR 5 , 2001, astro-ph/0110682.

[40]  E. Purcell On the alignment of interstellar dust , 1969 .

[41]  Christine D. Wilson,et al.  Magnetic Fields in Star-forming Molecular Clouds. I. The First Polarimetry of OMC-3 in Orion A , 1999, astro-ph/9911148.

[42]  Jungyeon Cho,et al.  GRAIN ALIGNMENT AND POLARIZED EMISSION FROM MAGNETIZED T TAURI DISKS , 2007 .

[43]  A. Lazarian,et al.  Mechanical Alignment of Prolate Cosmic-Dust Grains: Cross Section Alignment , 1996 .

[44]  A. Goodman,et al.  The Polarizing Power of the Interstellar Medium in Taurus , 1998, astro-ph/9803199.

[45]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[46]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[47]  L. Davis Theories of interstellar polarization , 1955 .

[48]  A. LazarianB. Draine Thermal flipping and thermal trapping: New elements in grain dynamics , 1999 .

[49]  W. A. Hiltner,et al.  Polarization of Light From Distant Stars by Interstellar Medium. , 1949, Science.

[50]  A. Dolginov Orientation of interstellar and interplanetary grains , 1972 .

[51]  A. Lazarian,et al.  Gold-type mechanisms of grain alignment , 1994 .

[52]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005 .

[53]  E. Purcell,et al.  Suprathermal rotation of interstellar grains , 1979 .

[54]  Inelastic dissipation in a freely rotating body: application to cosmic dust alignment , 1998, astro-ph/9811040.

[55]  L. Spitzer,et al.  Disorientation of interstellar grains in suprathermal rotation. , 1979 .

[56]  P. Andre',et al.  The initial conditions of isolated star formation – V. ISOPHOT imaging and the temperature and energy balance of pre stellar cores , 2001, astro-ph/0109173.

[57]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Polarization: Spheroids , 1995 .

[58]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[59]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[60]  A. Goodman,et al.  Does near-infrared polarimetry reveal the magnetic field in cold dark clouds? , 1995 .

[61]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[62]  Department of Physics,et al.  Simulations of polarized dust emission , 2006, astro-ph/0609143.