A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths

Abstract To realize highly precise and automatic cloud detection from multi-sensors, this paper proposes a cloud detection algorithm-generating (CDAG) method for remote sensing data from visible to short-wave infrared (SWIR) bands. Hyperspectral remote sensing data with high spatial resolution were collected and used as a pixel dataset of cloudy and clear skies. In this paper, multi-temporal AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data with 224 bands at visible to SWIR wavelengths and a 20 m spatial resolution were used for the dataset. Based on the pixel dataset, pixels of different types of clouds and land cover were distinguished artificially and used for the simulation of multispectral sensors. Cloud detection algorithms for the multispectral remote sensing sensors were then generated based on the spectral differences between the cloudy and clear-sky pixels distinguished previously. The possibility of assigning a pixel as cloudy was calculated based on the reliability of each method. Landsat 8 OLI (Operational Land Imager), MODIS (Moderate Resolution Imaging Spectroradiometer) Terra and Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer) were used for the cloud detection test with the CDAG method, and the results from each sensor were compared with the corresponding artificial results, demonstrating an accurate detection rate of more than 85%.

[1]  Neil Flood,et al.  Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series , 2013 .

[2]  Sylvie Le Hégarat-Mascle,et al.  Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical images , 2009 .

[3]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[4]  Zhe Zhu,et al.  Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change , 2014 .

[5]  Bo Yi Lin,et al.  Radiometric normalization and cloud detection of optical satellite images using invariant pixels , 2015 .

[6]  R. Saunders,et al.  An improved method for detecting clear sky and cloudy radiances from AVHRR data , 1988 .

[7]  Zhuosen Wang,et al.  Assessment of Cloud Screening With Apparent Surface Reflectance in Support of the ICESat-2 Mission , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Lin Sun,et al.  Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images , 2015, Remote. Sens..

[9]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[10]  Gérard Dedieu,et al.  A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images , 2010 .

[11]  Haruhisa Shimoda,et al.  Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. , 2011, Applied optics.

[12]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[13]  Steven D. Miller,et al.  Suomi NPP VIIRS Imagery evaluation , 2014 .

[14]  Keith D. Hutchison,et al.  Enhanced snow and ice identification with the VIIRS cloud mask algorithm , 2013 .

[15]  W. Rossow,et al.  Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP , 1993 .

[16]  Weitao Lu,et al.  An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image , 2012 .

[17]  Pat L. Scaramuzza,et al.  Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data , 2013 .

[18]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[19]  C. Long,et al.  Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data , 1991 .

[20]  Qinhuo Liu,et al.  Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data , 2010 .

[21]  Frank J. LaFontaine,et al.  Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[22]  K. T. Kriebel,et al.  The cloud analysis tool APOLLO: Improvements and validations , 2003 .

[23]  Richard A. Frey,et al.  The VIIRS Cloud Mask: Progress in the first year of S‐NPP toward a common cloud detection scheme , 2014 .

[24]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[25]  Jeffrey Russell,et al.  Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+ , 2001 .

[26]  Liangchao Li,et al.  Study on cloud processing methods with MODIS data , 2013, 2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications.

[27]  Freek D. van der Meer,et al.  Calibration of airborne visible - infrared imaging spectrometer data, AVIRIS to reflectance and mineral mapping in hydrothermal alteration zones : an example from the Cuprite mining district , 1994 .

[28]  Huifang Li,et al.  A Variational Gradient-based Fusion Method for Visible and SWIR Imagery , 2012 .

[29]  J. Kirkby,et al.  Cosmic Rays, Clouds, and Climate , 2002, Science.

[30]  Zhanqing Li,et al.  A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties , 2005 .

[31]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[32]  S. Goward,et al.  Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm , 2006 .

[33]  Bert Guindon,et al.  Quantitative assessment of a haze suppression methodology for satellite imagery: effect on land cover classification performance , 2003, IEEE Trans. Geosci. Remote. Sens..

[34]  G. Gesell,et al.  An algorithm for snow and ice detection using AVHRR data An extension to the APOLLO software package , 1989 .

[35]  Eric A. Smith,et al.  ISCCP Cloud Algorithm Intercomparison. , 1985 .

[36]  Bin Yu,et al.  Daytime Arctic Cloud Detection Based on Multi-Angle Satellite Data With Case Studies , 2008 .

[37]  Jun Yang,et al.  A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images , 2011 .

[38]  Jing Wei,et al.  [Method of Remote Sensing Identification for Mineral Types Based on Multiple Spectral Characteristic Parameters Matching]. , 2015, Guang pu xue yu guang pu fen xi = Guang pu.

[39]  Christos Zerefos,et al.  Effects of cirrus cloudiness on solar irradiance in four spectral bands , 2011 .

[40]  Harshvardhan,et al.  Earth radiation budget and cloudiness simulations with a general circulation model , 1989 .

[41]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[42]  K. T. Kriebel,et al.  Optical Properties of Clouds Derived from Fully Cloudy AVHRR Pixels , 1989 .

[43]  Paolo Gamba,et al.  Multi-feature combined cloud and cloud shadow detection in GF-1 WFV imagery , 2016, ArXiv.

[44]  Masanobu Shimada,et al.  On-orbit calibration of a multi-spectral satellite sensor using a high altitude airborne imaging spectrometer , 1997 .

[45]  W. Paul Menzel,et al.  Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Robert E. Ryan,et al.  Remote Sensing System Requirements Development: A Simulation-Based Approach , 2002 .

[47]  George Economou,et al.  Cloud detection and classification with the use of whole-sky ground-based images , 2012 .

[48]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[49]  H. Sembhi,et al.  Towards cloud detection and cloud frequency distributions from MIPAS infra-red observations , 2005 .

[50]  J. Cihlar,et al.  An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images , 2002 .

[51]  W. Paul Menzel,et al.  Cloud Detection of MODIS Multispectral Images , 2014 .

[52]  Fred A. Kruse,et al.  Quantitative geochemical mapping of ammonium minerals in the southern Cedar Mountains, Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS) , 1998 .

[53]  Peter Vogt,et al.  A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors , 2011 .

[54]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[55]  Lin Sun,et al.  A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database , 2016 .