Constrained optimal designs

Abstract The problem combining optimality criteria using constrained optimization techniques is considered. Constraints may be due to some optimality criteria so that the designs satisfying the constraints will have at least the minimal quality that an investigator wishes to maintain. A necessary and sufficient condition similar to Kiefer (Theorem 1, 1974a) is obtained using Frechet derivatives. Some examples are presented to illustrate some possible applications of the constrained optimality criterion, including Stigler's (1971) C-restricted D-criterion, Lauter's (1976) multiresponse modeling problem and Lee (1987), combination of A- and D-criteria.

[1]  F. Pukelsheim On linear regression designs which maximize information , 1980 .

[2]  R. Cook,et al.  Marginally restricted D-optimal designs , 1980 .

[3]  Andrej Pázman,et al.  Some features of the optimal design theory – a survey , 1980 .

[4]  G. E. Staats,et al.  Response Surface Optimization when Experimental Factors are Subject to Costs and Constraints , 1973 .

[5]  E. Läuter Experimental design in a class of models , 1974 .

[6]  P. Laycock Convex Loss Applied to Design in Regression Problems , 1972 .

[7]  Corwin L. Atwood,et al.  Convergent Design Sequences, for Sufficiently Regular Optimality Criteria , 1976 .

[8]  K. Smith ON THE STANDARD DEVIATIONS OF ADJUSTED AND INTERPOLATED VALUES OF AN OBSERVED POLYNOMIAL FUNCTION AND ITS CONSTANTS AND THE GUIDANCE THEY GIVE TOWARDS A PROPER CHOICE OF THE DISTRIBUTION OF OBSERVATIONS , 1918 .

[9]  Z. Galil,et al.  Comparison of designs equivalent under one or two criteria , 1983 .

[10]  Designs for large degree polynomial regression , 1978 .

[11]  A. R. Manson,et al.  Optimal Experimental Designs in Two Dimensions Using Minimum Bias Estimation , 1978 .

[12]  E. Läuter,et al.  Optimal multipurpose designs for regression models , 1976 .

[13]  P. Laycock,et al.  Optimal designs in regression problems with a general convex loss function. , 1968, Biometrika.

[14]  J. Tsay,et al.  On the Sequential Construction of D-Optimal Designs , 1976 .

[15]  Z. Galil,et al.  Extrapolation designs and Φp-optimum designs for cubic regression on the q-ball , 1979 .

[16]  J. Kiefer Optimum Experimental Designs , 1959 .

[17]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[18]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[19]  J. Kiefer,et al.  Time- and Space-Saving Computer Methods, Related to Mitchell's DETMAX, for Finding D-Optimum Designs , 1980 .

[20]  D. Titterington,et al.  Geometric approaches to design of experiment , 1980 .

[21]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[22]  A. D. L. Garza,et al.  Spacing of Information in Polynomial Regression , 1954 .

[23]  S. D. Silvey,et al.  Optimal design measures with singular information matrices , 1978 .

[24]  Paul G. Hoel,et al.  Efficiency Problems in Polynomial Estimation , 1958 .

[25]  D. Titterington Optimal design: Some geometrical aspects of D-optimality , 1975 .

[26]  Laurence A. Wolsey,et al.  An elementary survey of general duality theory in mathematical programming , 1981, Math. Program..

[27]  Changbao Wu,et al.  Some Algorithmic Aspects of the Theory of Optimal Designs , 1978 .

[28]  S. Silvey,et al.  A Lagrangian approach to optimal design , 1974 .

[29]  Nripes Kumar Mandal On Robust Designs , 1989 .

[30]  W. J. Studden,et al.  OPTIMAL DESIGNS FOR WEIGHTED POLYNOMIAL REGRESSION USING CANONICAL MOMENTS , 1982 .

[31]  Corwin L. Atwood,et al.  Optimal and Efficient Designs of Experiments , 1969 .

[32]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[33]  T. J. Mitchell,et al.  Design criteria for detecting model inadequacy , 1978 .

[34]  J. Kiefer Asymptotic Approach to Families of Design Problems , 1985 .

[35]  M. Kreĭn,et al.  The Markov moment problem and extremal problems : ideas and problems of P.L. Čebyšev and A.A. Markov and their further development , 1977 .

[36]  Anthony C. Atkinson,et al.  Planning experiments to detect inadequate regression models , 1972 .

[37]  W. J. Studden $D_s$-Optimal Designs for Polynomial Regression Using Continued Fractions , 1980 .

[38]  Stephen M. Stigler,et al.  Optimal Experimental Design for Polynomial Regression , 1971 .

[39]  A duality theorem with applications to statistics , 1983 .

[40]  A. C. Atkinson,et al.  Developments in the Design of Experiments , 1982 .

[41]  W. J. Studden Some Robust-Type D-Optimal Designs in Polynomial Regression , 1982 .

[42]  Jaroslava Mikulecká On a hybrid experimental design , 1983, Kybernetika.

[43]  J. Kiefer ON THE NONRANDOMIZED OPTIMALITY AND RANDOMIZED NONOPTIMALITY OF SYMMETRICAL DESIGNS , 1958 .

[44]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[45]  M. Skibinsky The range of the (n + 1)th moment for distributions on [0, 1] , 1967 .

[46]  Z. Galil,et al.  Comparison of Simplex Designs for Quadratic Mixture Models , 1977 .

[47]  S. Ehrenfeld On the Efficiency of Experimental Designs , 1955 .

[48]  Ker-Chau Li,et al.  Robust Regression Designs when the Design Space Consists of Finitely Many Points , 1984 .

[49]  W. Welch Branch-and-Bound Search for Experimental Designs Based on D Optimality and Other Criteria , 1982 .

[50]  A. Atkinson,et al.  Optimal design : Experiments for discriminating between several models , 1975 .

[51]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[52]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[53]  Carl Lee,et al.  Constrained optimal designs for regressiom models , 1987 .

[54]  A. Hedayat,et al.  An Introduction to Design Optimality with an Overview of the Literature. , 1978 .

[55]  J. Kiefer Optimal design: Variation in structure and performance under change of criterion , 1975 .

[56]  DESIGN PROBLEMS IN MODEL ROBUST REGRESSION AND EXACT D-OPTIMALITY , 1983 .

[57]  Friedrich Pukelsheim,et al.  General Differential and Lagrangian Theory for Optimal Experimental Design , 1983 .

[58]  Henry P. Wynn,et al.  Jack Kiefer's Contributions to Experimental Design , 1984 .

[59]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[60]  Christopher J. BISHOPAbstra,et al.  Orthogonal Functions , 2022 .

[61]  P. Whittle Some General Points in the Theory of Optimal Experimental Design , 1973 .

[62]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[63]  F. N. David,et al.  LINEAR STATISTICAL INFERENCE AND ITS APPLICATION , 1967 .

[64]  Lloyd S. Nelson,et al.  Statistical Design and Analysis of Experiments , 1990 .

[65]  L. Pesotchinsky,et al.  Optimal Robust Designs: Linear Regression in $R^k$ , 1982 .

[66]  Walter T. Federer Some Recent Results in Experiment Design with a Bibliography: I , 1980 .

[67]  G. Box,et al.  A Basis for the Selection of a Response Surface Design , 1959 .

[68]  H. Bandemer,et al.  Problems in foundation and use of optimal experimental design in regression models , 1980 .

[69]  L. L. Pesotchinsky,et al.  D-optimum and quasi-D-optimum second-order designs on a cube , 1975 .

[70]  P. Whittle,et al.  Optimization under Constraints , 1975 .

[71]  W. J. Studden,et al.  Optimal Experimental Designs , 1966 .

[72]  R. C. St D-Optimality for Regression Designs: A Review , 1975 .

[73]  H. Wynn Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .

[74]  Luis A. Escobar,et al.  Spacing of information in polynomial regression:a simple solution , 1983 .

[75]  C. Atwood Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .

[76]  L. Pesotchinsky,et al.  Phi sub p-Optimal Second Order Designs for Symmetric Regions , 1978 .

[77]  Dankmar Böhing,et al.  On the construction of optimal experimental designs: a penalty approach , 1981 .

[78]  Morris Skibinsky,et al.  Some Striking Properties of Binomial and Beta Moments , 1969 .

[79]  Morris Skibinsky Extreme nth moments for distributions on [0, 1] and the inverse of a moment space map , 1968 .

[80]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[81]  A. R. Manson,et al.  Minimum Bias Estimation and Experimental Design for Response Surfaces , 1969 .

[82]  W. J. Studden,et al.  Optimal Designs for Large Degree Polynomial Regression , 1976 .

[83]  R. J. Paul,et al.  Optimization Theory: The Finite Dimensional Case , 1977 .