Contrast and colorimetry measurements versus viewing angle for microdisplays

The response of a microdisplay device as a function of viewing angle is a major element in the quality of a microdisplay-based system. Such measurements are tricky and time intensive when realized with mechanical equipment. A new system, optimized for microdisplay and based on Fourier Optics is described. It realizes luminance and color coordinates measurement up to +/-30° with 0-360° azimuth angles in one shot (less than one minute) with a resolution better than 0.1 degree. This paper shows how characterization of the microdisplay itself, or combined with its illumination, can be performed for emissive, transmissive, reflective, on and off axis illuminated microdisplay devices. In particular, how its long working distance allows the equipment to carry out measurement even through beam splitter or complicated combination cubes is described. The new tool is shown to be adequate both for R&D and manufacturing teams.

[1]  P. Seidler 26.1: Invited Paper: Organic Light‐Emitting Devices for Display Applications , 1999 .

[2]  Y. Ji,et al.  47.3: Performance Enhancement of Reflective CMOS TN Displays in Projection Applications Using Compensating Films , 1999 .

[3]  Kunio Enami,et al.  High-information-content projection display based on reflective LC-on-silicon light valves , 1998 .

[4]  10.1: Invited Paper: Illumination Optics for LC Projection Displays , 1998 .

[5]  Joseph Hourigan Morrissy,et al.  36.3: Reflective Microdisplays for Projection or Virtual-View Applications , 1999 .

[6]  Alan E. Rosenbluth,et al.  Optimization of light-valve mirrors , 1998 .

[7]  Iwao Takemoto,et al.  5.4:Silicon Chip Based Reflective PDLC Light Valve for Projection Display , 1998 .

[8]  Keiichiro Doi,et al.  5.3: Reflective AM LCD for Projection Displays: D‐ILA™ , 1998 .

[9]  Douglas J. Darrow,et al.  21.4: DLP Cinema™ Projectors: Enabling Digital Cinema , 2000 .

[10]  W. Pratt,et al.  P‐4: Defect Detection in Reflective Liquid‐Crystal Microdisplays , 1999 .

[11]  Hoi Sing Kwok,et al.  Generalized Mixed Mode Reflective LCDs for Three Panel Color Projection Applications , 1999 .

[12]  A. Gross,et al.  Eye Safety Analysis of Scanning Beam Displays , 1999 .

[13]  A. Kunzman,et al.  10.3 White Enhancement for Color Sequential DLP , 1998 .

[14]  Al Hildebrand,et al.  49.4: Ergonomic Wearable Personal Display , 2000 .

[15]  D. Doherty,et al.  10.4: Phased Reset Timing for Improved Digital Micromirror Device™ (DMD™) Brightness , 1998 .

[16]  R. W. Gymer Organic electroluminescent displays , 1996 .

[17]  Philip J. Bos,et al.  Optimization of Bend Cells for Field-Sequential Color Microdisplay Applications , 1999 .

[18]  R. D. Sterling D-ILA technology for electronic cinema , 2000 .

[19]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[20]  Osamu Akimoto,et al.  15.1: A 0.9‐in UXGA/HDTV FLC Microdisplay , 2000 .

[21]  B. Stephens The Beat Goes On , 1991, Science.

[23]  Katsuhide Uchino,et al.  40.3: Ultra‐High Brightness 1.8‐in. XGA poly‐Si TFT LCD , 1998 .

[24]  Sang-Gook Kim,et al.  Thin‐Film Micromirror Array (TMA) for Cost‐Competitive Information Display Systems , 1999 .