Advances in molecular genetics of alpha-2- and alpha-3/4-fucosyltransferases.

Fucosyltransferases are involved in the last steps of the biosynthesis of ABH and Lewis oligosaccharide antigens. Seven human genes (FUT1 to FUT7) and one pseudogene (Sec 1) have been cloned and localized on different chromosomes (9q34.3; 11q21; 19p13.3 and 19q13.3). Their locations and their high degree of primary sequence identity, suggest that they have appeared by successive duplications followed by translocation and divergent evolution. Their expression is tissue specific and they present a switch during human embryo-foetal development similar to that of hemoglobins. Polymorphic genes FUT1-FUT2 and FUT3-FUT5-FUT6 are organized in two clusters and each gene is partially or totally inactivated by different types of point mutations (nonsense, missense and frame shift), complete gene deletion or a fusion gene. The products of the monomorphic genes FUT4 and FUT7 seem implicated in cell-cell interactions during embryo-foetal development and in the leukocyte adhesion phenomena to endothelial cells in the adult. A phylogenetic tree of the 28 available nucleotide coding sequences of fucosyltransferases has allowed us to situate the duplication events with respect to the separation of species from the main evolutionary path (nematods, birds, mammals, primates and humans). Recently, using a computer approach a general structure of fucosyltransferases has been proposed, inspired from the crystalline structure of the beta-glucosyltransferase of bacteriophage T4. This folding contains two domains with an alternate succession alpha and beta chains. In this model the GDP-fucose binding site would be located between the two domains.